Responsive image
博碩士論文 etd-0722109-160928 詳細資訊
Title page for etd-0722109-160928
論文名稱
Title
金廈地區懸浮微粒物化特性分析及污染源解析探討
Physicochemical Characteristics and Source Apportionment of Atmospheric Particles in Kinmen-Xiamen Region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
227
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-05
繳交日期
Date of Submission
2009-07-22
關鍵字
Keywords
大氣懸浮微粒、化學成份特徵、受體模式、逆軌跡模式、時空分佈、污染源解析
chemical characteristic, atmospheric particles, source apportionment, tempospatial distribution, backward trajectory, receptor model
統計
Statistics
本論文已被瀏覽 5657 次,被下載 27
The thesis/dissertation has been browsed 5657 times, has been downloaded 27 times.
中文摘要
近年來,金廈地區空氣品質有逐年惡化之趨勢,指標空氣污染物為PM10,高濃度PM10出現在春、冬兩季。本計畫旨在藉由大氣懸浮微粒採樣及化學成份分析,探討金廈地區懸浮微粒之污染特性,並利用化學質量平衡受體模式(receptor model),進行PM10懸浮微粒之污染源解析,並推估污染源種類及貢獻率,再進一步探討背景期間及污染事件期間之差異性。此外,本計畫亦利用逆軌跡模式(backward trajectory),藉由風場資料判斷PM10懸浮微粒之可能污染來源及傳輸路徑。
有鑑於此,本研究自2008年3月1日起於金門地區設置三處懸浮微粒採樣站,廈門地區設置四處懸浮微粒採樣站。金門地區懸浮微粒採樣站分別位於大金門島東北端之金沙國小、大金門島中部之金鼎國小、小金門島之烈嶼國中三處。廈門地區懸浮微粒採樣站分別位於九龍江南岸之廈門大學漳州校區、廈門島南端之廈門大學海洋樓、大嶝島之大嶝中學及金井鎮毓英小學四處。PM10採樣區分為例行採樣及密集採樣,例行採樣於每月5日及20日進行24小時之採樣(若遇下雨則順延);密集採樣則於高PM10濃度發生時進行採樣。
由懸浮微粒採樣結果及等濃度分佈圖顯示,金廈地區春季及秋季PM10濃度較高,夏季則較低。春季期間吹東北風時,PM10濃度明顯上升,最高濃度位於金門及廈門之間,並未依季風風向呈現由東北方向朝西南方向遞減之趨勢,當東北風將境外污染物經長程傳輸至金門地區時,其他各站之PM10濃度亦均發生疊加效應而普遍上升,此結果顯示位於大廈門灣內的本地污染源對金廈地區PM10濃度之影響似較長程傳輸之影響更為顯著。
由化學成份分析結果顯示,金廈地區懸浮微粒中水溶性離子以SO42-、NO3-、NH4+三種離子濃度為最高,其次為Cl-及Na+。此外,進一步分析得知,影響金廈地區懸浮微粒之化學物種主要為硫酸銨、硝酸銨等衍生性二次氣膠。金屬元素成份中以Ca濃度最高,其次為Mg、Fe、Al等地殼元素,而人為污染物Zn、Pb亦有一定含量。碳成份中有機碳(OC)含量高於元素碳(EC)含量。氣團逆軌跡分析顯示金廈地區秋末到春末污染氣團主要來自大陸地區;夏季氣團則主要來自於東南方及西南方海域地區,並未經過污染嚴重區域,此為夏季金廈地區空氣品質較佳的原因之一。金廈地區PM10之各污染源種類及貢獻量而言,主要污染源為土壤揚塵、衍生性二次氣膠、鍋爐燃燒、石油化工業、交通尾氣排放、鋼鐵業、水泥業、柴油車排放、海鹽、農廢燃燒等九大種類,其中固定污染源之貢獻率將近50%,然而金門本地並無相關工業,故推斷其係由境外傳輸至金門地區,顯示區域性污染源及境外傳入污染物均值得注意。
Abstract
In recent years, the air quality of Kinmen-Xiamen region has deteriorated gradually, and PM10 was always the worst air quality indicator. Particularly, high PM10 concentration has been observed in spring and winter. The objective of this study was to characterize the chemical properties of atmospheric aerosol particles sampled at Xiamen Bay located at the west coast of Taiwan Strait by sampling atmospheric particles and using chemical mass balance (CMB) receptor model for source apportionment, which indicated the difference of background and episode periods. Furthermore, this study applied HYSPLIT model to figure out the transportation routes of polluted air mass by backward trajectory.
Seven particulate matter (PM) sampling sites at Xiamen Bay, three sites at Kinmen Island and four sites at metro Xiamen, were selected for this particular study. Particulate matter sampling included regular and intensive sampling. Intensive sampling was conducted to collect PM2.5 and PM2.5-10 with dichotomous samplers in the spring and winter of 2008 and 2009, while regular sampling was conducted to collect PM10 with high-volume samplers twice a month since March 2008.
Results from PM sampling indicated that atmospheric particles had a tendency to accumulate in Xiamen Bay all year round, particularly in spring and winter. Five sampling sites inside the Xiamen Bay had relatively higher PM concentration than two sampling sites outside the Xiamen Bay. It suggested that local emission at the Xiamen Bay was superior to long-range transportation from the Northeastern Monson. A superimposition phenomenon was regularly observed during the episodes at Xiamen Bay. The most abundant water-soluble ionic species of PM were SO42-, NO3-, and NH4+ at Xiamen Bay, the major chemical species of PM were secondary aerosols (i.e. (NH4)2SO4 and NH4NO3). Crustal elements (e.g. Ca, Mg, Fe, and Al) and anthropogenic elements (e.g. Zn and Pb) dominated the chemical species of particles.
Backward trajectory results indicated that polluted air mass originated from Asian continent moved directly to Kinmen-Xiamen region in winter and spring, while air mass originated from the southwestern and southeastern ocean did not pass polluted region in summer, which result in better air quality of Kinmen-Xiamen region in summer than those in winter and spring.
Results from CMB receptor modeling showed that the major sources of atmospheric PM10 at Kinmen-Xiamen region were soil dust, secondary aerosol, petroleum industry, motor vehicle exhanst, iron and steel industry, cement industry, Diesel vehicle exhanst marine aersols, and vegetative burning. The stationary sources were the major contributor accounting for approximately 50% of PM10 in Kinmen. It suggested that atmospheric particles were mainly originated from cross-boundary transport rather than local emission sources since there are no such kinds of industrial factories in Kinmen.
目次 Table of Contents
謝誌………………………………………………………………………. I
中文摘要…………………………………………………………………. II
英文摘要 …………………………………………………...………….... IV
目錄 …….……………………………...…………................................... VI
表目錄 .……………………………………..………………….………... X
圖目錄 ….……………………………………………...………………... XIV
第一章 前言 …………………………………………………………... 1-1
1-1 研究動機………………………………...……...……………….. 1-1
1-2 研究目的……………………………………….………………... 1-2
1-3 研究範圍……………………………………………..………….. 1-2
1-4 研究流程……………………………………………..………….. 1-4
第二章 文獻回顧 ……………………………………………………... 2-1
2-1 金廈地區環境概況…………………..………………………… 2-1
2-1-1 金廈地區地理概況……………...………………………….. 2-1
2-1-2 金廈地區氣候特徵…………………...…………………….. 2-1
2-1-3 金廈地區空氣品質監測現況…………………...………….. 2-6
2-2 懸浮微粒之來源及物化特性…………………………………… 2-7
2-2-1 懸浮微粒之來源及分佈……………………………………. 2-7
2-2-2 懸浮微粒之形成機制…………...………………………….. 2-9
2-2-3 懸浮微粒之水溶性離子成份特性…………...…………….. 2-10
2-2-4 懸浮微粒之金屬元素成份特性……………...…………….. 2-13
2-2-5 懸浮微粒之碳成份特性……………………………………. 2-13
2-3 水溶性離子來源分析…………...…………...………………… 2-14
2-3-1 懸浮微粒之酸鹼性………...…………...………………… 2-15
2-3-2 懸浮微粒之生成機制……...…………...………………… 2-15
2-3-3 懸浮微粒之硫酸鹽與硝酸鹽傳輸現象...………………… 2-16
2-4 金廈地區懸浮微粒之濃度變化趨勢…………………………. 2-17
2-4-1 金門地區之PSI變化趨勢………………...……………….. 2-17
2-4-2 廈門地區之API變化趨勢…………………...…………….. 2-20
2-4-3 金廈地區懸浮微粒之時空分佈趨勢………………………. 2-21
2-5 廈門地區懸浮微粒污染源解析………………….….………… 2-22
2-5-1 廈門地區懸浮微粒成份特徵分析…………………………. 2-22
2-5-2 廈門地區懸浮微粒成份時空變化特徵分析……..…........... 2-28
2-6 受體模式之原理及應用………………………………………… 2-29
2-6-1 受體模式之原理……………………………………………. 2-29
26--2 受體模式之應用……………………………………………. 2-30
2-7 逆軌跡模式之原理與應用……………………………………… 2-32
2-7-1 逆軌跡模式之原理…………………………………………. 2-32
2-7-2 逆軌跡模式之應用…………………………………………. 2-33
第三章 研究方法………………………………………………………. 3-1
3-1 金廈地區空氣品質監測資料分析……...………………………. 3-1
3-2 金廈地區懸浮微粒採樣規劃…..…………..…………………… 3-2
3-2-1 採樣時間及地點……………………...…………………….. 3-2
3-2-2 廈門地區產業結構與分佈…………...…………………….. 3-4
3-3 懸浮微粒採樣方法……………………………………………… 3-5
3-3-1 高量採樣器(High-volume Sampler)……………………….. 3-5
3-3-2 雙粒徑分道採樣器(Dichotomous Sampler)……………….. 3-8
3-4 懸浮微粒化學成份分析方法…………………………………… 3-11
3-4-1 水溶性離子成份分析……………………………………… 3-11
3-4-2 金屬元素成份分析………………………………………… 3-12
3-4-3 碳成份分析………………………………………………… 3-13
3-5 品保與品管………………………………………………............ 3-15
3-5-1 採樣方法之品保與品管…………………………………… 3-15
3-5-2 分析方法之品保與品管……………………………………. 3-19
3-5-2-1 質量濃度分析…………………………………………... 3-19
3-5-2-2 化學成份分析…………………………………………... 3-19
3-6 污染源貢獻量推估方法……………………………………….... 3-21
3-6-1 污染源解析方法……………………….…………………… 3-21
3-6-1-1 受體模式之基本理論…………………………………... 3-21
3-6-1-2 化學質量平衡法………………………………………... 3-23
3-6-1-3 污染源種類資料檔之建立……………………………... 3-25
3-6-2 污染氣團傳輸路徑分析方法………………………………. 3-25
第四章 結果與討論….…........................................................................ 4-1
4-1 金廈地區懸浮微粒質量濃度變化趨勢………………………… 4-1
4-1-1 例行採樣期間懸浮微粒之時空分佈……………………… 4-1
4-1-2 密集採樣期間懸浮微粒之時空分佈……………………… 4-14
4-2 污染氣團傳輸路徑分析...……………………………................. 4-22
4-3 例行採樣期間懸浮微粒化學成份指紋特徵…………………… 4-36
4-3-1 例行採樣期間懸浮微粒水溶性離子成份分析…………… 4-37
4-3-2 例行採樣期間懸浮微粒金屬元素成份分析…………….... 4-43
4-3-3 例行採樣期間懸浮微粒碳元素成份分析………………… 4-50
4-4 密集採樣期間懸浮微粒化學成份指紋特徵…………………… 4-53
4-4-1 密集採樣期間懸浮微粒水溶性離子成份分析…………… 4-53
4-4-2 密集採樣期間懸浮微粒金屬元素成份分析…………........ 4-56
4-4-3 密集採樣期間懸浮微粒碳元素成份分析………………… 4-65
4-5 懸浮微粒相關數據解析………………………………………… 4-70
4-5-1 酸鹼中和率、硫轉化率及氮轉化率之比値關係………… 4-70
4-5-2 懸浮微粒化學成份指紋相關性分析……………………… 4-71
4-6 懸浮微粒污染源解析…………………………………………… 4-77
4-6-1 選用之污染源指標元素及化學組成………………………. 4-77
4-6-2 例行採樣期間懸浮微粒污染源解析………………………. 4-79
4-6-3 密集採樣期間懸浮微粒污染源解析………………………. 4-88
第五章 結論與建議……………………………………………………. 5-1
5-1 結論..…………………………………………………………….. 5-1
5-2 建議..…………………………………………………………….. 5-3
參考文獻………………………………………………………………... R-1
附錄A分析方法之品保品管.………………………………….………. A-1
附錄B分析儀器之檢量線………………………………….……….…. B-1
附錄C金廈地區懸浮微粒化學成份數據………………….………….. C-1
參考文獻 References
Andreas, L., Josef, R., Heimburger, G., Kranabetter, A., and Hans, P., ”Seasonal variation of palladium, elemental carbon and aerosol mass concentrations in airborne particulate matter,” Atmos. Environ., Vol.38, pp.1979-1987, 2004.
Artinano, B., Salvador, P., Alonso, D.G., Querol, X., and Alastuey, A., “Anthropogenic and natural influence on the PM10 and PM2.5 aerosol in Madrid (Spain). Analysis of high concentration episodes,” Environmental Pollution, Vol.125, pp.453-465, 2003.
Aymoz G., Jaffrezo J.L., and Chapuis D., “Seasonal variations of aerosol chemical composition in two alpine valleys,” Abstracts of the European Aerosol Conference, 2004.
Bi, X., Feng, Y., Wu, J., Wang, Y., and Zhu, T., “Source apportionment of PM10 in six cities of northern China,” Atmos. Environ., Vol.41, pp.903-912, 2007.
Borge, R., Lumbreras, J., Vardoulakis, S., Kassomenos, P., and Rodriguez, E., “Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters,” Atmos. Environ., Vol.41, pp.4434-4450, 2007.
Breed, C.A., Arocena, J.M., and Sutherland, D., “Possible sources of PM10 in Prince George (Canada) as revealed by morphology and in situ chemical composition of particulate,” Atmos. Environ., Vol.36, pp.1721-1731, 2002.
Buchanan, C.M., Beverland, I.J., and Heal, M.R., “The influence of weather-type and long-range transport on airborne particle concentrations in Edinburgh, UK,” Atmos. Environ., Vol.36, pp.5343-5354, 2002.
Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., and Koutrakis, P., “Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece,” Atmos. Environ., Vol.37, pp. 649-660, 2003.
Chan, Y.C., Simpson, G.H., Mctainsh, P.D., Vowles, P.D., Cohen, D.D., and Bailey, G.M., ” Atmos. Environ., Vol.33, pp.2151-3268, 1999.
Chang, S.Y., Fang, G.C., Chou, C.C.K., and Chen, W.N., “Source identifications of PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei Basin during spring season of 2004,” Chemosphere, Vol.65, pp.792-801, 2006.
Chang, S.Y., Fang, G.C., Chou, C.C.K., and Chen, W.N., ”Chemical compositions and radiative properties of dust and anthropogenic air masses study in Taipei Basin, Taiwan, during spring of 2004,” Atmos. Environ., Vol.40, pp.7796-7809, 2006.
Cheng, M.D., “Identification of markers for chemical mass balance receptor model,” Atmos. Environ., Vol.23, No.6, pp.1373-1384, 1989.
Choi, Y.S., Ho, C.H., Chen, D., Noh, Y.H., and Song, C.K., “Spectral analysis of weekly variation in PM10 mass concentration and meteorological conditions over China,” Atmos. Environ., Vol.42, pp.655-666, 2008.
Fang, G.C., Wu, Y.S., Chen, J.C., Rau, J.Y., Huang, S.H., and Lin, C.K., “Concentrations of ambient air particulates (TSP, PM2.5 and PM2.5–10) and ionic species at offshore areas near Taiwan Strait,” Journal of Hazardous Materials, Vol.132, pp.269-276, 2006.
Favez, O., Cachier, H., Sciare, J., Alfaro S.C., El-Araby, T.M., Harhash, M.A., and Abdelwahab, M.M., “Seasonality of major aerosol species and their transformations in Cairo megacity,” Atmos. Environ., Vol.42, pp.1503-1516, 2008.
Fosco, T., and Schmeling, M., “Aerosol ion concentration dependence on atmospheric conditions in Chicago,” Atmos. Environ., Vol.40, pp. 6638-6649, 2006.
Gehrig, R.T., and Buchmann, B.E., “Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data,” Atmos. Environ., Vol.37, pp.2571-2580, 2003.
Gilli, G., Traversi, D., Rovere, R., Pignata, C., and Schiliro, T., “Airborne particulate matter: Ionic species role in different Italian sites,” Environment Research, Vol.103, pp.1-8, 2007.
Gray, H.A., and Cass G.R., ”Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles,” Environ. Sci. Technol, Vol 20, pp.580-589, 1986.
Gupta, A.K, Karar, K., and Srivastava, A., “Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India,” Journal of Hazardous Materials, Vol.142, pp.279-287, 2007.
Han, L., Zhuang, G., Cheng, S., and Li, J., “The mineral aerosol and its impact on urban pollution aerosols over Beijing, China,” Atmos. Environ., Vol.41, pp.7533-7546, 2007.
Handler, M., Puls, C., Zbiral, J., Marr, I., Puxbaum, H., and Limbeck, A., “Size and composition of particulate emissions from motor vehicles in the Kaisermuhlen-Tunnel, Vienna,” Atmos. Environ., Vol.42, pp.2173-2186, 2008.
He, Z., Kim, Y.J., Ogunjobi, K.O., and Hong, C.S., “Characteristics of PM2.5 species and long-range transport of air masses at Taean background station, South Korea,” Atmos. Environ., Vol.37, pp.219-230, 2003.
Ho, K.F., Lee, S.C., Chow, J.C., and Watson, J.G., “Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong,” Atmos. Environ., Vol.37, pp.1023-1032, 2003.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., and Vonmont, H., “Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland,” Atmos. Environ., Vol.39, pp.637-651, 2005.
Kaneyasu, N., ”Seasonal variation in chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan,” Atmos. Environ., Vol.29, No.13, pp.1559-1568, 1995.
Kasahara, M., Choi, K.C., and Takahash, K., ”Source Contribution of Atmospheric Aerosols in Japan by chemical mass balance method,” Atmos. Environ., Vol.24A, pp.457-466, 1990.
Kocak, M., Mihalopoulos, N., and Kubilay, N., “Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean,” Atmos. Environ., Vol.41, pp.7351-7368, 2007.
Lai, C.H., Chen, K.S., Ho, Y.T., Peng, Y.P., and Chou, Y.M., “Receptor modeling of source contributions to atmospheric hydrocarbons in urban Kaohsiung, Taiwan,” Atmos. Environ., Vol.39, pp.4543-4559, 2005.
Limbeck, A., Rendl, J., Heimburger, G., Kranabetter, A., and Puxbaum, H., ” Seasonal variation of palladium, elemental carbon and aerosol mass concentrations in airborne particulate matter,” Atmos. Environ. Vol.38, pp.1979-1987, 2004.
Lin, C.Y., Liu, S.C., Chou, C.C.K., Huang, S.J., Liu, C.M., Kuo, C.H., and Young, C.Y., ” Long-range transport of aerosols and their impact on the air quality of Taiwan.“ Atmos. Environ., Vol.39, pp.6066-6076, 2005.
Lin, C.Y., Liu, S.C., Chou, C.C.K., Liu, T.H., Lee, C.T., Yuan, C.S., Shiu, C.J., and Young, C.Y., ” Long-range transport of asian dust and air pollutants to Taiwan,” TAO, Vol.15, No.5, pp.759-784, 2004.
Lin, J.J., ”Characterization of water-soluble ion species in urban ambient particles,” Environment International, Vol.28, pp.55-61, 2002.
Lopez, J.M., Callen, M.S., Murillo, R., Garcia, T., Navarro, M.V., de la Cruz, M.T., and Mastral, A.M., ” Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain),” Environmental Research, Vol.99, pp.58-67, 2005.
Lu, H.C., and Fang, G.C., ” Estimating the frequency distributions of PM10 and PM2.5 by the statistics of wind speed at Sha-Lu, Taiwan,” The Science of the Total Environment, Vol.298, pp.119-130, 2002.
Ma, C.J., Kasahara, M., Holler, R., and Kamiya, T., ” Characteristics of single particles sampled in Japan during the Asian dust-storm period,” Atmos. Environ. Vol.35, pp.2707-2714, 2001.
Maenhaut, W., Raes, N., Chi, X., Wang, W., Cafmeyer, J., Ocskay, R., and Salma, I., “Chemical composition and mass closure of the atmospheric aerosol at K-PUSZTA, HUNGARY, in summer 2003,” Abstracts of the European Aerosol Conference, 2004.
Marcazzan, G.M., Vaccaro, S., Valli, G., and Vecchi, R. “Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy),” Aerosol Science, Vol.35, pp.4639-4650, 2001.
Man, C.K., and Shih, M.Y., “Identification of sources of PM10 aerosols in Hong Kong by wind trajectory analysis,” Aerosol Science, Vol.32, pp.1213–1223, 2001.
Ohta, S., “A chemical characterization of atmospheric aerosol in SAPPORO,” Atmos. Environ., Vol.24A, No.4, pp.815-822, 1990.
Pastuszka, J.S., Wawros, A., Talik, E., and Paw, K.T., “Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland,” The Science of the Total Environment, Vol.309, pp237-251, 2003.
Pillai, P.S., Babu, S.S., and Moorthy, K.K., ” A study of PM, PM10 and PM2.5 concentration at a tropical coastal station,” Atmospheric Research, Vol.61, pp.149-167, 2002.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, R.C., Cots, N., Massague, G., and Puig, O., ”PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain,” Atmos. Environ., Vol.35, pp.6407-6419, 2001.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Mantilla, E., and Ruiz, C.R., “Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources,” Atmos. Environ., Vol.35, pp.845- 858, 2001.
Rodriguez, S., Querol, X., Alastuey, A., and Mantilla, E., “Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain,” Atmos. Environ., Vol.36, pp.3101-3112, 2002.
Saliba, N.A., Kouyoumdjian, H., and Roumie, M., “Effect of local and long-range transport emissions on the elemental composition of PM10–2.5 and PM2.5 in Beirut,” Atmos. Environ., Vol.41, pp.6497-6509, 2007.
Salma, I., Chi, X., and Maenhaut, W., “Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary,” Atmos. Environ., Vol.38, pp.27-36, 2004.
Samara, C., Kouimtzis, T., Tsitouridou, R., Kanias, G., and Simeonov,V., “Chemical mass balance source apportionment of PM10 in an industrialized urban area of Northern Greece,” Atmos. Environ., Vol.37, pp.41-54, 2003.
Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z., and Hao, Z., “The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources,” Atmos. Environ., Vol.38, pp.5991-6004, 2004.
Sharma, M., Kiran, Y.N.V.M., and Shandilya, K.K., “Investigations into formation of atmospheric sulfate under high PM10 concentration,” Atmos. Environ., Vol.37, pp.2005-2013, 2003.
Srivastava, A., and Jain V.K., “Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model,” Journal of Hazardous Materials, Vol.144, pp.283-291, 2007.
Temesi, D., Molnar, A., Meszaros, E., Feczko, T., Gelencser, A., Kiss, G., and Krivacsy, Z., “Size resolved chemical mass balance of aerosol particles over rural Hungary,” Atmos. Environ., Vol.35, pp.4347-4355, 2001.
Tsai, Y.I., and Cheng, M.T., “Size distribution and chemical composition of urban aerosols during autumn PMI0 episodes,” J. Aerosol Science, Vol.33, pp.S523-S524, 1999.
Tsai, Y.I., and Chen, C.L., “Atmospheric aerosol composition and source apportionments to aerosols in southern Taiwan,” Atmos. Environ., Vol.40, pp.4751-4763, 2006.
Turnbull, A.B., and Harrison, R.M., “Major component contributions to PM10 composition in the UK atmosphere,” Atmos. Environ., Vol.34, pp.3129-3137, 2000.
Toro, P., and Cortes, E., “Assessment of the chemical characterisitics and sources of airborne particulate matter in Santiago,Chile,” Journal of Radioanalytical and Nuclear Chemistry, Vol.221, pp.127-136, 1997.
Viana, M., Chi, X., Maenhaut, W., Querol, X., Alastuey, A., Mikuska, P., and Vecera, Z., “Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain,” Atmos. Environ., Vol.40, pp.2180-2193, 2006.
Vecchi, R., Marcazzan, G., and Valli, G., “A study on nighttime–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy),” Atmos. Environ., Vol.41, pp.2136-2144, 2007.
Vega, E., Mugica, V., Reyes, E., Sanchez, G., Chow, J.C., and Watson, J.G., “Chemical composition of fugitive dust emitters in Mexico City,” Atmos. Environ., Vol.35, pp.4033-4039, 2001.
Wang, G., Huang, L., Gao, S., and Wang, L., “Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China,” Atmos. Environ., Vol.36, pp.1299-1307, 2002.
Wal, J.T., and Janssen, L.H., “Analysis of spatial and temporal variations of PM10 concentrations in the Netherlands using Kalman filtering,” Atmos. Environ., Vol.34, pp.3675-3687, 2000.
Wu, Y., Hao, J., Fu, J., Wang, Z., and Tang, U., “Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China,” The Science of the Total Environment, Vol.317, pp.159-172, 2003.
Yang, K.L., “Spatial and seasonal variation of PM10 mass concentrations in Taiwan,” Atmos. Environ., Vol.36, pp.3403-3411, 2002.
高金和、王玮、杜漸、劉紅杰、龐燕波、楊大鋼,”廈門春季氣溶膠特徵初探”,Research of Environmental Science, Vol.9, 1996.
鄭曼婷、邱嘉斌、楊宏隆、陳紀綸,”沿海地區大氣懸浮微粒污染來源分析”,中華民國第十五屆環境工程學會空氣污染控制技術研討會論文集,1997。
王景良,“中部空品區污染源逸散粉塵的組成分析”,國立中興大學環境工程研究所碩士論文,1999。
鄭曼婷、賴宏志、廖崇圜、王宏恩、袁中新,“應用CMB模式分析南高屏地區懸浮微粒之污染來源”,第十七屆空氣污染控制技術研討會論文集,2000。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
邱嘉斌、林煜棋、林忠賢、鄭曼婷、莊秉潔,“應用CMB7受體模式與PM軌跡模式解析中部都會區PM10懸浮微粒之污染來源”,第十八屆空氣污染控制技術研討會,2001。
黃美倫,“中部空品區大氣氣膠中水溶性離子微粒之特性探討”,國立中興大學環境工程研究所碩士論文,2001。
葉士鳴,“大氣懸浮微粒含碳成份之分佈及與來源”,國立成功大學環境工程研究所碩士論文,2002。
林姵吟,“台北都會區黃沙時期氣膠特性”,國立中央大學環境工程研究所碩士論文,2002。
梁正中、陳木麟、江憲宗,“運用CMB 模式配合分析與調查探討都會區之碳氫化合物來源與特性”,中華民國第十九屆空氣污染控制技術研討會,2002。
蔡瀛逸,”懸浮微粒之成份來源解析及管制策略探討”,高雄縣環境保護局研究計畫2003。
紹承宗,“大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究”,中山大學環境工程研究所碩士論文,2003。
郭丁彰,“氣象觀測於軌跡模式的發展與改善”,中興大學環境工程研究所碩士論文,2003。
袁中新、海春興、趙明、劉乙琦、林志逢,“長距離傳送過程中沙塵指紋特徵辨識探討”,第四屆海峽兩岸沙塵暴與環境治理研討會,2005。
袁中新、林勳佑、蔡協宏、洪崇軒、李家偉、黃玉立、黃堃修,“高屏空品區大氣懸浮微粒污染熱區解析”,第二十二屆空氣污染控制技術研討會,2005。
中國科學院生態環境研究所,“廈門市空氣品質解析及控制對策”, 2006。
庄馬展、楊紅斌、王堅、余新田、黃至、曹超、張學敏,”廈門大氣可吸入顆粒物離子成份特徵研究”,Modern Scientific Instruments, Vol.6, 2006.
庄馬展、楊紅斌、王堅、黃厔、曹超、張學敏、黃炳洲,”廈門市大氣顆粒物化學元素特徵”,廈門科技,2006。
王堅、庄馬展、楊紅斌、張學敏、曹超、黃厔,”廈門市空氣PM10中有機碳和元素碳的污染特徵”,Environmental Chemistry, Vol.25, 2006.
庄馬展,”廈門大氣細顆粒PM2.5化學成份譜特徵研究”,Modern Scientific Instruments, Vol.5, 2007.
劉乙琦、蔡協宏、覃偉民、袁中新,”2002~2005年台灣地區沙塵暴長程傳輸路徑及沙塵物化特徵比較分析”,中華民國第二十五屆環境工程學會空氣污染控制技術研討會論文集,2007。
侯伶佳,“運用受體模式與軌跡模式探討懸浮微粒之貢獻與傳輸”,逢甲大學環境工程與科學學系碩士論文,2007。
劉乙琦,”澎湖地區之亞洲沙塵物化特性分析及沙塵來源解析”,國立中山大學環境工程研究所碩士論文,2008。
行政院環境保護署 http://www.epa.gov.tw/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.87.156
論文開放下載的時間是 校外不公開

Your IP address is 3.133.87.156
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code