Responsive image
博碩士論文 etd-0722109-170946 詳細資訊
Title page for etd-0722109-170946
論文名稱
Title
焦耳熱效應下電滲驅動Y型微混合器之研究
Mixing Efficiency of Y-type Mixer with Joule Heating Effect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-02
繳交日期
Date of Submission
2009-07-22
關鍵字
Keywords
μPIV及μLIF量測、焦耳熱效應、混合角度、微混合器
Micromixer, Mixing angle, Joule heating, μPIV and μLIF measurements
統計
Statistics
本論文已被瀏覽 5685 次,被下載 1751
The thesis/dissertation has been browsed 5685 times, has been downloaded 1751 times.
中文摘要
本實驗設計七種不同混合角度的微混合器,採用電滲驅動的方式驅動流體(Ex = 5 - 25 kV/m),利用微質點影像測速儀(μPIV),量測渠道中的速度場分佈,並分析兩入口渠道對衝所產生的停滯區大小對混合長度的影響。本實驗並以微雷射誘發螢光技術(μLIF)量測各微渠道之混合長度與混合效率,分析混合角度及焦耳熱效應對混合效率的影響。實驗結果顯示,停滯區能夠增加混合效率,其中尤以-60°混合角度之停滯區最大,混合效率最好,同時焦耳熱效應也對混合效率有些微的幫助。
Abstract
This study proposed a Y-type mixer which was driven by electroosmotic flow (Ex = 5 - 25 kV/m) with 7 different mixing angles (30°, 60°, 90°, 120°, -120°, -90°, -60°) to enhance mixing efficiency . The mixing performance of the device was demonstrated by using micro laser-induced fluorescence (μLIF) technology to quantify the concentration distribution in the microchannel. Also, micro particle image velocimetry (μPIV) was used for velocity measurements and analysis. It was found that the negative mixing angle could induce larger dead zone area than the positive one. The joule heating effect was found when electric field strength was larger than 15 kV/m. The combined dead zone and joule heating effect could enhance the mixing performance slightly. Although it has only a marginal effect on the mixing length for the positive mixing angles. Negative mixing angles allow a reduction of mixer size, which means a more efficient use of material and space. Finally, the best mixing angle was found to be -60°.
目次 Table of Contents
目錄 i
表目錄 iii
圖目錄 iv
符號說明 vi
中文摘要 viii
Abstract ix
第一章 序論 1
1-1 前言 1
1-2 微流體系統 2
1-3 混合器種類與混合機制 3
1-4 電滲現象 4
1-5 焦耳熱效應 5
1-6 研究背景與目的 5
1-7 文獻回顧 6
第二章 實驗系統與設備 10
2-1 μPIV及μLIF系統 10
2-2 製程設備 11
2-3 實驗相關設備 13
第三章 實驗方法及步驟 26
3-1 微混合器設計與製程 26
3-2 工作流體配製 28
3-3 μPIV/μLIF量測系統建立 28
3-4 分析方法 29
3-5 實驗參數及範圍 32
第四章 理論分析 42
4-1 雷諾數 (Reynolds number) 42
4-2 培克數 (Peclet number) 42
4-3 電滲之理論方程式 42
4-4 速度分析 43
4-5 布朗運動與Einstein-Smoluchowski 方程式 44
4-6 混合效率 44
第五章 誤差分析 46
第六章 結果與討論 50
6-1 μPIV之流場量測 50
6-2 停滯區(Dead zone)分析 50
6-3 μLIF之濃度場量測 51
6-4 混合角度對混合效率之影響 52
6-5 電場強度對混合效率之影響 53
6-6 關係式建立 53
第七章 結論與建議 67
7-1 結論 67
7-2 建議與改進 68
參考文獻 69
附錄 A 75
參考文獻 References
1. H. H. Bau, "Transport Processes Associated with Micro-Devices," Thermal Science and Engineering, Vol. 2, 1994, pp. 172-178.
2. G. Y. Tang, C. Yang, J. C. Chai, and H. Q. Gong, "Joule Heating Effects on Electroosmotic Flow and Mass Species Transport in a Microcapillary," International Heat and Mass Transfer, Vol. 47, 2004, pp. 215-227.
3. G. Y. Tang, D. Yang, C. Yang, H. Q. Gong, J. C. Chai, and Y. C. Lam, "Assessment of Joule Heating and its Effects in Electroosmotic Flow and Electrophoretic Transport of Solutes in Microfluidic Channels," Electrophoresis, Vol. 27, 2006, pp. 628-639.
4. R. Sadr, M. Yoda, Z. Zheng, and A. T. Conlisk, "An Experimental Study of Electro-Osmotic Flow in Rectangular Microchannels," Journal of Fluid Mechanics, Vol. 506, 2004, pp. 357-367.
5. D. W. Oh, J. S. Jin, J. H. Choi, H. Y. Kim, and J. S. Lee, "A MicroFluidic Chaotic Mixer Using Ferrofluid," Journal of Micromechanics and Microengineering, Vol. 17, 2007, pp. 2077-2083.
6. J. M. Ottino, "Mixing, Chaotic Advection, and Turbulence," Annu. Rev. Fluid Mech., Vol. 22, 1990, pp. 207-253.
7. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, "Chaotic Mixer for Microchannels," Science, Vol. 295, 2002, pp. 647-651.
8. S. Wiggiun, and J. M. Ottino, "Foundations of Chaotic Mixing," Philosophical Transaction, Royal Society, London, Vol. 362, 2004, pp. 937-970.
9. T. J. Johnson, D. Ross, and L. E. Locascio, "Rapid Microfluidic Mixing," Anal. Chem., Vol. 74, 2002, pp. 45-51.
10. R. Wang, J. Lin, and H. Li, "Chaotic Mixing on a Micromixer with Barriers Embedded," Chaos, Solitons & Fractals, Vol. 33, 2007, pp. 1362-1366.
11. H. M. Xia, S. Y. M. Wan, C. Shu, and Y. T. Chew, "Chaotic Micromixers Using Two-Layer Crossing Channels to Exhibit Fast Mixing at Low Reynolds Numbers," Lab on a Chip, Vol. 5, 2005, pp. 748-755.
12. C. K. Chung, and T. R. Shih, "Effect of Geometry on Fluid Mixing of the Rhombic Micromixers," Microfluid Nanofluid, Vol. 4, 2008, pp. 419-425.
13. H. Wang, P. Iovenitti, E. Harvey, and S. Masood, "Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels, " Smart Materials and Structures, Vol. 11, 2002, pp. 662-667.
14. K. L. K. Llu, K. L. Davis, and M. D. Morris, "Raman Spectorscopic Measurement of Spatial and Temporal Temperature Gradients in Operating Electrophoresis Capillaries," Analytic Chemistry, Vol. 66, 1994, pp. 3744-3750.
15. R. Sadr, M. Yoda, Z. Zheng, and A. T. Conlisk, “An Experimental Study of Electro-osmotic Flow in Rectangular Microchannels,” Journal of Fluid Mechanics, Vol. 506, 2004, pp. 357-367.
16. R. J. Yang, T. I. Tseng, and C. C. Chang, “End Effects on Electroosmotic Flows in Microchannels,” Journal of Micromechanics and Microengineering, Vol. 15, 2005, pp. 254-262.
17. D. G. Yan, C. Yang, and X. Y. Huang, “Effects of Finite Reservoir Size on Electroosmotic Flow in Microchannels,” Microfluid and NanoFluid, Vol. 3, 2007, pp. 333-340.
18. D. Sinton, and D. Li, "Electroosmotic Velocity Profiles in Microchannels," Colloids and Surfaces A, Vol. 222, 2003, pp. 273-283.
19. D. Gobby, P. Angeli and A. Gavriilidis, "Mixing Characteristics of T-Type Microfluidic Mixers," Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 126-132.
20. D. Sinton, C. E. Canseco, L. Ren, and D. Li, "Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels," J. Colloid Interface Sci., Vol. 254, 2002, pp. 184-189.
21. D. Maynes, and B. W. Webb, "Fully Developed Electro-Osmotic Heat Transfer in Microchannels," Int. J. Heat Mass Transfer, Vol. 46, 2003, pp. 1359-1369.
22. D. Maynes, and B. W. Webb, "Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels," ASME J. Heat Transfer, Vol. 88, 2003, pp. 889-895.
23. S. S. Hsieh, C. Y. Lin, C. F. Huang and H. H. Tsai, "Liquid Flow in a Microchannel," Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 436-445.
24. S. S. Hsieh, H. H. Tsai, C. H. Lin, C. F. Huang, C. M. Chien, "Gas Flow in a Long Microchannel," Int. Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 3877-3887.
25. N. T. Nguyen , and Z. Wu, “Micromixers - a Review,” Journal of Micromechanics and Microengineering, Vol. 15, 2005, pp.1-16.
26. S. S. Hsieh, H. C. Lin, and C. Y. Lin, “Electroosmotic Flow Velocity Measurements in a Square Microchannel,” Colloid and Polymer Science, Vol. 284, 2006, pp. 1275-1286.
27. K. Efimenko, W. E. Wallace, and J. Genzer, "Surface Modification of Sylgard-184 (dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment," Journal of Colloid and Interface Science, Vol. 254, 2002, pp. 306-315.
28. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature Measurements in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye, Analytical Chemistry," Vol. 73, 2001, pp. 4117-4123
29. M. Hoffmann, M. Schlüter, and N. Räbiger, “Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV,” Chemical Engineering Science, Vol. 61, 2006, pp.2968-2976.
30. S. S. Hsieh, T. K. Yang, "Electroosmotic Flow in Rectangular Microchannesl with Joule Heating Effects," Journal of Micromechanics and Microengineering, Vol. 18, 2008, 025025(11pp).
31. S. S. Hsieh, Y. C. Huang, "Passive Mixing in Micro-Channels with Geometric Variations through μPIV and μLIF Measurements," Journal of Micromechanics and Microengineering, Vol. 18, 2008, 065017(11pp).
32. C. K. Chen, C. C. Cho, "Electrokinetically-Driven Flow Mixing in Microchannels with Wavy Surface," Journal of Colloid Interface Science, Vol. 312, 2007, pp. 470-480.
33. R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications, Academic Press, London, 1981.
34. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid Prototyping of Microfluidic Systems in Poly(dimethysiloxane)," Analytical Chemistry, Vol. 70, 1998, pp. 4974-4984.
35. R. J. Moffat, "Contributions to the Theory of Single-Sample Uncertainty Analysis," Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.
36. S. T. Kline, and F. A. Mcclintock, "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
37. Y. Zhang, X. J. Gu, R. W. Barber, and D. R. Emerson, "An Analysis of Induced Pressure Fields in Electroosmotic Flows Through Microchannels," Journal of Colloid and Interface Science, Vol. 275, 2004, pp. 670-678.
38. R. J. Yang, T. I. Tseng, and C. C. Chang, "End Effects on Electroosmotic Flows in Microchannels," Journal of Micromechanics and Microengineering, Vol. 15, 2005, pp. 254-262.
39. X. Xuan, B. Xu, D. Sinton, and D. Li, “Electroosmotic Flow with Joule Heating Effects,” Lab on a Chip, Vol. 4, 2004, pp. 230-236
40. I. Glasgow, J. Batton, and N. Aubry, “Electroosmotic Mixing in Microchannels, ”Lab on a Chip, Vol.4, 2004 , pp.558-562.
41. A. O. Moctar, N. Aubry, and J. Batton, “Electro-hydrodynamic Micro-fluidic Mixer,” Lab on a Chip, Vol.3, 2003, pp.273-280.
42. G. Y. Tang, C. Yang, H. Q. Gong, C. J. Chai, and Y. C. Lam, “On Electrokinetic Mass Transport in a Microchannel with Joule Heating Effects,” Journal of Heat Transfer, Vol. 127, 2005, pp. 660-663.
43. S. Hardt, K. S. Drese, V. Hessel, and Schönfeld, “Passive micromixers for applications in the microreactor and μTAS field,” Microfluid Nanofluid, Vol.1, pp.108-118.
44. V. Hessel, H. Löwe, and F. Schönfeld, “Micromixers - A Review on Passive and Active Mixing Principles,” Chemical Engineering Science, Vol.60, 2005, pp.2479-2501.
45. R. J. Yang, C. H. Wu, T. I. Tseng, S. B. Huang, and G. B. Lee, “Enhancement of Electrokinetically-driven Flow Mixing in Microchannel with Added Side Channels,” Japanese Journal of Applied Physics, Vol.44, 2005, pp. 7634-7642.
46. C. Simonnet, and A. Groisman,“Chaotic Mixing in a Steady Flow in a Microchannel,” The American Physical Society, Vol. 94, 2005, pp.1-4.
47. J. M. Ottino, and S. Wiggins, “Introduction Mixing in Microfluidics,” Th Royal Society, Vol.362, 2004, pp.923-935.
48. Y. K. Lee, J. Deval, P. Tabling, and C. M. Ho, “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” The 14th IEEE Workshop on MEMS Interlaken, Switzerland, 2001.
49. K. Horicuchi, and P. Dutta, “Joule Heating Effects in Electroosmotically Driven Microchannel Flows,” Int. J. Heat Mass Transfer, Vol. 47, 2004, pp.3085-3095.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code