Responsive image
博碩士論文 etd-0722110-113132 詳細資訊
Title page for etd-0722110-113132
論文名稱
Title
Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY)質子導體氧化物燃料電池之陽極作用層最佳化製作與電化學特性之研究
Optimization of Anode Functional Layer for Ba(Zr0.1Ce0.7Y0.2)O3-δ -Based SOFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-26
繳交日期
Date of Submission
2010-07-22
關鍵字
Keywords
Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY)、刮刀成型、靜電輔助噴塗、陽極作用層、固態氧化物燃料電池
Anode Functional Layer (AFL), Electrostatic Spray Deposition (ESD), Tape-Casting, Solid Oxide Fuel Cell (SOFC), Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY)
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY)在固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)廣泛的操作溫度範圍中,其不但具有高質子導性,也具有高化學穩定性。使用靜電輔助噴塗(Electrostatic Spray Deposition, ESD)製作陰極材料Sm0.5Sr0.5CoO3-δ (SSC)於以Tape-casting所製作的SOFC半電池上,可得到多孔且網狀的微觀形貌;而整體SOFC單電池的架構為Substrate/ BZCY+NiO/ BZCY/ SSC。陽極作用層造孔劑含量為0.0 wt.%、5.0 wt.%、10.0 wt.%以及15.0 wt.%時的SOFC單電池,受到燒結熱處理後的電解質厚度分別為22 μm、20 μm、17.6 μm以及15.1 μm,在700℃操作溫度的功率密度分別可得到476.89 mW/cm2、713.34 mW/cm2、862.50 mW/cm2以及706.89 mW/cm2。
Abstract
Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY) shows high proton conductivity as well as high chemical stability over a wide range of solid oxide fuel cell (SOFC) operating conditions. Sm0.5Sr0.5CoO3-δ (SSC) cathode deposited by electrostatic spray deposition (ESD) on SOFC half cell obtained via tape-casting shows porous and reticular microstructure, and the SOFC single cell consists of substrate/ BZCY+NiO/ BZCY/ SSC. The electrolyte thickness decrease from 22 μm, 20 μm, 17.6 μm to 15.1 μm after sintering as the content of carbon pore former in the corresponding anode functional layer increased from 0.0 wt.%, 5.0 wt.%, 10.0 wt.% to 15.0 wt.%, and the maximum power density of corresponding cells at 700℃ varies from 476.89 mW/cm2, 713.34 mW/cm2, 862.50 mW/cm2 to 706.89 mW/cm2, respectively.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖目錄 IV
表目錄 VI
第一章 前言 1
第二章 文獻回顧與探討 3
2-1 SOFC的工作原理與機制 3
2-2 SOFC的材料與晶體結構 12
2-3新穎的SOFC架構 23
第三章 研究方法及步驟 25
3-1實驗流程 25
3-2粉末的製備 26
3-3 SOFC元件的製備 26
3-4元件分析與特性測試 28
3-4-1晶體結構鑑定 28
3-4-2微觀形貌觀察 28
3-4-3電化學特性量測 28
第四章 結果與討論 29
4-1微觀形貌觀察與晶體結構鑑定 29
4-2電化學特性量測 31
第五章 結論 39
參考文獻 41
參考文獻 References
[1] D. H. Jeon, J. H. Nam and C. J. Kim, “Microstructural Optimization of Anode-Supported Solid Oxide Fuel Cells by a Comprehensive Microscale Model”, Journal of The Electrochemical Society, 153 (2006) A406-A417.
[2] H. L. Tuller and A. S. Nowick, “Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as Electrolyte: I. Steady-State Overpotential”, Journal of The Electrochemical Society, 126 (1979) 1155-1165.
[3] S. B. Adler, J. A. Lane and B. C. H. Steele, “Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes”, Journal of The Electrochemical Society, 143 (1996) 3554-3564.
[4] J. D. Fehribach and R. O'Hayre, “Triple Phase Boundaries in Solid-Oxide Cathodes”, SIAM Journal on Applied Mathematics, 70 (2009) 510-530.
[5] T. Takahashi and H. Iwahara, “Protonic Conduction in Perovskite Type Oxide Solid Solutions”, Revue de Chimie Minérale, 17 (1980) 243-253.
[6] N. Bonanos, “Transport Properties and Conduction Mechanism in High-Temperature Protonic Conductors”, Solid State Ionics, 53-56 (1992) 967-974.
[7] T. Norbya, “Proton Conduction in Oxides”, Solid State Ionics, 40-41 (1990) 857-862.
[8] S. Shin, H. H. Huang, M. Ishigame and H. Iwahara, “Protonic Conduction in the Single Crystals of SrZrO3 and SrCeO3 Doped with Y2O3”, Solid State Ionics, 40-41 (1990) 910-913.
[9] R. C. T. Slade and N. Singh, “Systematic Examination of Hydrogen Ion Conduction in Rare-Earth Doped Barium Cerate Ceramics”, Solid State Ionics, 46 (1991) 111-115.
[10] R. L. Cook and A. F. Sammells, “On the Systematic Selection of Perovskite Solid Electrolytes for Intermediate Temperature Fuel Cells”, Solid State Ionics, 45 (1991) 311-321.
[11] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki and H. Suzuki, “Protonic Conduction in Calcium, Strontium and Barium Zirconates”, Solid State Ionics, 61 (1993) 65-69.
[12] R. C. T. Slade and N. Singh, “The Perovskite-Type Proton-Conducting Solid Electrolyte BaCe0.90Y0.10O3−δ in High Temperature Electrochemical Cells”, Solid State Ionics, 61 (1993) 111-114.
[13] H. Iwahara, “Technological Challenges in the Application of Proton Conducting Ceramics”, Solid State Ionics, 77 (1995) 289-298.
[14] T. Yajima, H. Suzuki, T. Yogo and H. Iwahara, “Protonic Conduction in SrZrO3-Based Oxides”, Solid State Ionics, 51 (1992) 101-107.
[15] S. C. Singhal and K. Kendall, “High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier, Kidlington, UK., (2003).
[16] T. Ishihara, “Perovskite Oxide for Solid Oxide Fuel Cells”, Springer, New York, USA, (2009).
[17] S. Gopalan and A. V. Virkar, “Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells”, Journal of The Electrochemical Society, 140 (1996) 1060-1065.
[18] C. W. Tanner and A. V. Virkar, “Instability of BaCeO3 in H2O-Containing Atmospheres”, Journal of The Electrochemical Society, 143 (1996) 1386-1389.
[19] S. V. Bhide and A. V. Virkar, “Stability of BaCeO3-Based Proton Conductors in Water-Containing Atmospheres”, Journal of The Electrochemical Society, 146 (1999) 2038-2044.
[20] J. Guan, S. E. Dorris, U. Balachandran and M. Liu, “The Effects of Dopants and A: B Site Nonstoichiometry on Properties of Perovskite-Type Proton Conductors, Journal of The Electrochemical Society, 145 (1998) 1780-1786.
[21] Z. Zhong, “Stability and Conductivity Study of the BaCe0.9−xZrxY0.1O2.95 Systems”, Solid State Ionics, 178 (2007) 213-220.
[22] C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano and M. Uchiyama, “Ba(Zr0.1Ce0.7Y0.2)O3–δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells”, Advanced Materials, 18 (2006) 3318-3320.
[23] T. Norby, “Solid-State Protonic Conductors: Principles, Properties, Progress and Prospects”, Solid State Ionics, 125 (1999) 1-11.
[24] K. D. Kreuer, “Proton-Conducting Oxides”, Annual review of materials research, 33 (2003) 333-359.
[25] K. Xie, R. Q. Yan, D. H. Dong, S. L. Wang, X. R. Chen, T. Jiang, B. Lin, M. Wei, X. Q. Liu and G. Y. Meng, “A Modified Suspension Spray Combined with Particle Gradation Method for Preparation of Protonic Ceramic Membrane Fuel Cells”, Journal of Power Sources, 173 (2008) 576-583.
[26] L. Yang, C. D. Zuo, S. Z. Wang, Z. Cheng and M. L. Liu, “A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors”, Advanced Materials, 20 (2008) 3280-3283.
[27] T. Hibino, A. Hashimoto, M. Suzuki and M. Sano, “A Solid Oxide Fuel Cell Using Y-Doped BaCeO3 with Pd-Loaded FeO Anode and Ba0.5Pr0.5CoO3 Cathode at Low Temperatures”, Journal of the Electrochemical Society, 149 (2002) A1503-A1508.
[28] Q. L. Ma, R. R. Peng, Y. J. Lin, J. F. Gao and G. Y. Meng, “A High-Performance Ammonia-Fueled Solid Oxide Fuel Cell”, Journal of Power Sources, 161 (2006) 95-98.
[29] H. Iwahara, H. Uchida and K. Morimoto, “High Temperature Solid Electrolyte Fuel Cells Using Perovskite-Type Oxide Based on BaCeO3”, Journal of the Electrochemical Society, 137 (1990) 462-465.
[30] N. Ito, M. Iijima, K. Kimura and S. Iguchi, “New Intermediate Temperature Fuel Cell with Ultra-Thin Proton Conductor Electrolyte”, Journal of Power Sources, 152 (2005) 200-203.
[31] Y. Lin, R. Ran, Y. Zheng, Z. P. Shao, W. Q. Jin, N. P. Xu and J. M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Potential Cathode for an Anode-Supported Proton-Conducting Solid-Oxide Fuel Cell”, Journal of Power Sources, 180 (2008) 15-22.
[32] K. Xie, Q. L. Ma, B. Lin, Y. Z. Jiang, J. F. Gao, X. Q. Liu and G. G. Meng, “An Ammonia Fuelled SOFC with a BaCe0.9Nd0.1O3-δ Thin Electrolyte Prepared with a Suspension Spray”, Journal of Power Sources, 170 (2007) 38-41.
[33] L. Bi, S. Q. Zhang, B. Lin, S. M. Fang, C. R. Xia and W. Liu, “Screen-Printed BaCe0.8Sm0.2O3-δ Thin Membrane Solid Oxide Fuel Cells with Surface Modification by Spray Coating”, Journal of Alloys and Compounds, 473 (2009) 48-52.
[34] L. Yang, S. Z. Wang, K. Blinn, M. F. Liu, Z. Liu, Z. Cheng and M. L. Liu, “Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ”, Science, 326 (2009) 126-129.
[35] L. Yang, Z. Liu, S. Z. Wang, Y. M. Choi1, C. D. Zuo and M. L. Liu, “A Mixed Proton, Oxygen Ion, and Electron Conducting Cathode for SOFCs Based on Oxide Proton Conductors”, Journal of Power Sources, 195 (2010) 471-474.
[36] L. Yang, C. D. Zuo and M. L. Liu, “High-Performance Anode-Supported Solid Oxide Fuel Cells Based on Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY) Fabricated by a Modified Co-Pressing Process”, Journal of Power Sources, 195 (2010) 1845-1848.
[37] S. B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chemical Reviews, 104 (2004) 4791-4843.
[38] H. Y. Tu, Y. Takeda, N. Imanishi and O. Yamamoto, “Ln1−xSrxCoO3 (Ln = Sm, Dy) for the Electrode of Solid Oxide Fuel Cells”, Solid State Ionics, 100 (1997) 283-288.
[39] J. W. Kang, K. H. Ryu and C. H. Yo, Bulletin of Korean Chemical Society, 16 (1995) 600-603.
[40] K. Yoshii, H. Abe and A. Nakamura, “Magnetism and Transport of Ln0.5Sr0.5CoO3 (Ln = Pr, Nd, Sm and Eu)”, Materials Research Bulletin, 36 (2001) 1447-1454.
[41] T. Suzuki, P. Jasinski, V. Petrovsky, F. Dogan and H. Anderson, “The Microstructure Effect on the Electrical and Optical Properties of Undoped and Sr-doped SmCoO3Thin Films”, Solid State Ionics, 175 (2004) 437-439.
[42] S. Yang, T. He and Q. He, “Sm0.5Sr0.5CoO3 Cathode Material from Glycine-Nitrate Process: Formation, Characterization and Application in LaGaO3-Based Solid Oxide Fuel Cells”, Journal of Alloys and Compounds, 450 (2008) 400-404.
[43] H. Lv, B. Y. Zhao, Y. J. Wu, G. Sun, G. Chen and K. A. Hu, “Effect of B-Site Doping on Sm0.5Sr0.5MxCo1−xO3−δ Properties for IT-SOFC Cathode Material (M = Fe, Mn)”, Materials Research Bulletin, 42 (2007) 1999-2012.
[44] H. Lv, Y. J. Wu, B. Huang, B. Y. Zhao and K. A. Hu, “Structure and Electrochemical Properties of Sm0.5Sr0.5Co1−xFexO3−δ Cathodes for Solid Oxide Fuel Cells”, Solid State Ionics, 177 (2006) 901-906.
[45] T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi and Y. Takita, “Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor”, Journal of Electrochemical Society, 145 (1998) 3177-3183.
[46] S. W. Baek, J. H. Kim and J. Bae, “Characteristics of ABO3 and A2BO4 (A = Sm, Sr; B = Co, Fe, Ni) Samarium Oxide System as Cathode Materials for Intermediate Temperature-Operating Solid Oxide Fuel Cell”, Solid State Ionics, 179 (2008) 1570-1574.
[47] S. W. Baek, J. Bae and Y. S. Yoo, “Cathode Reaction Mechanism of Porous-Structured Sm0.5Sr0.5CoO3−δ and Sm0.5Sr0.5CoO3−δ/ Sm0.2Ce0.8O1.9 for Solid Oxide Fuel Cells”, Journal of Power Sources, 193 (2009) 431-440.
[48] F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia and F. Chen, “Novel Nano-Network Cathodes for Solid Oxide Fuel Cells”, Journal of Power Sources, 185 (2008) 13-18.
[49] Z. Wang, W. Weng, K. Chen G. Shen, P. Du and G. Han, “Preparation and Performance of Nanostructured Porous Thin Cathode for Low-Temperature Solid Oxide Fuel Cells by Spin-Coating Method”, Journal of Power Sources, 175 (2008) 430-435.
[50] T. L. Nguyen, T. Kato, K. Nozaki, T. Honda, A. Negishi, K. Kato and Y. Iimura, “Application of (Sm0.5Sr0.5)CoO3 as a Cathode Material to (Zr,Sc)O2 Electrolyte with Ceria-Based Interlayers for Reduced-Temperature Operation SOFCs”, Journal of the Electrochemical Society, 153 (2006) A1310-1316.
[51] X. Zhang, M. Robertson, S. Yick, C. Deces-Petit, E. Styles, W. Qu, Y. Xie, R. Hui, J. Roller, O. Kesler, R. Maric and D. Ghosh, “Sm0.5Sr0.5CoO3 + Sm0.2Ce0.8O1.9 Composite Cathode for Cermet Supported Thin Sm0.2Ce0.8O1.9 Electrolyte SOFC Operating below 600°C”, Journal of Power Sources, 160 (2006) 1211-1216.
[52] Y. Liu, S. Zha and M. Liu, “Nanostructured Electrodes for SOFCs Fabricated by Combustion Chemical Vapor Deposition (CVD)”, Advanced Materials, 16 (2004) 256-260.
[53] C. Xia, W. Rauch, F. Chen and M. Liu, “Sm0.5Sr0.5CoO3 Cathodes for Low-Temperature SOFCs”, Solid State Ionics, 149 (2002) 11-19.
[54] C. Xia and M. Liu, “Low-Temperature SOFCs Based on Gd0.1Ce0.9O1.95 Fabricated by Dry Pressing”, Solid State Ionics, 144 (2001) 249-255.
[55] C. Xia, F. Chen and M. Liu, “Reduced-Temperature Solid Oxide Fuel Cells Fabricated by Screen Printing”, Electrochemical and Solid-State Letters, 4 (2001) A52-A54.
[56] C. T. Lin, I. M. Huang, K. Z. Fung and M. H. Hon, “The Characterization of Oxygen Deficit Cathode Sm0.5Sr0.5Co1-xCuxO3-δ (x=0~0.3) for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Journal of Materials Science and Engineering, 38 (2006) 11-17.
[57] M. C. Pearce and V. Thangadurai, “Investigations of Chemical Stability of Ce0.85Ca0.05Sm0.1O1.9 with Sr-Doped ABO3 (A = La, Sm; B = Mn, Co) Using X-ray Powder Diffraction and AC Impedance”, Ionics, 14 (2008) 483-489.
[58] Y. Liu, S. Zha and M. Liu, “Nanocomposite Electrodes Fabricated by a Particle-Solution Spraying Process for Low-Temperature SOFCs”, Chemistry of Materials, 16 (2004) 3502-3506.
[59] Y. Liu, W. Rauch, S. Zha and M. Liu, “Fabrication of Sm0.5Sr0.5CoO3−δ- Sm0.1Ce0.9O2−δ Cathodes for Solid Oxide Fuel Cells Using Combustion CVD”, Solid State Ionics, 166 (2004) 261-268.
[60] J. H. Song, S. I. Park, J. H. Lee and H. S. Kim, “Fabrication Characteristics of an Anode-Supported Thin-Film Electrolyte Fabricated by the Tape Casting Method for IT-SOFC”, Journal of Materials Processing Technology, 198 (2008) 414-418.
[61] H. Moona, S. D. Kim, S. H. Hyun and H. S. Kim, “Development of IT-SOFC Unit Cells with Anode-Supported Thin Electrolytes via Tape Casting and Co-Firing”, International Journal of Hydrogen Energy, 33 (2008) 1758-1768.
[62] H. Moona, S. D. Kim, E. W. Park, S. H. Hyun and H. S. Kim, “Characteristics of SOFC Single Cells with Anode Active Layer via Tape Casting and Co-Firing”, International Journal of Hydrogen Energy, 33 (2008) 2826-2833.
[63] J. S. Ahn, H. Yoon, K. T. Lee, M. A. Camaratta and E. D.Wachsman, “Performance of IT-SOFC with Ce0.9Gd0.1O1.95 Functional Layer at the Interface of Ce0.9Gd0.1O1.95 Electrolyte and Ni-Ce0.9Gd0.1O1.95 Anode”, Fuel Cells, 5 (2009) 643-649.
[64] C. H. Chen, E. M. Kelder, P. J. J. M. van der Put and J. Schoonman,” Morphology Control of Thin LiCoO2 Films Fabricated Using the Electrostatic Spray Deposition (ESD) Technique”, Journal of Material Chemistry, 6 (1996) 765-771.
[65] C. S. Hsu, B. H. Hwang, Y. S. Xie and X. Zhang, “Enhancement of Solid Oxide Fuel Cell Performance by La0.6Sr0.4Co0.2Fe0.8O3-δ Double-Layer Cathode”, Journal of The Electrochemical Society, 155 (2008) B1240- B1243.
[66] R. Costa, J. Hafsaoui, A. P. Almeida de Oliveira, A. Grosjean, M. Caruel, A. Chesnaud and A. Thorel, “Tape Casting of Proton Conducting Ceramic Material”, Journal of The Electrochemical Society, 39 (2009) 485-495.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.192.3
論文開放下載的時間是 校外不公開

Your IP address is 3.137.192.3
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code