Responsive image
博碩士論文 etd-0722110-122215 詳細資訊
Title page for etd-0722110-122215
論文名稱
Title
以垂直流式人工濕地處理含硫酸鹽廢水之研究
Treatment of Wastewater Containing Sulfate by Vertical-Flow Constructed Wetlands.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
159
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-08
繳交日期
Date of Submission
2010-07-22
關鍵字
Keywords
氨氮、厭氧處理、垂直流人工濕地、硫酸還原菌、硫酸鹽
Sulfate reducing bacteria, Vertical-flow constructed wetlands, Anaerobic treatment, Ammonia, Sulfate
統計
Statistics
本論文已被瀏覽 5682 次,被下載 2730
The thesis/dissertation has been browsed 5682 times, has been downloaded 2730 times.
中文摘要
本研究嘗試以實驗室規模之垂直流式人工濕地進行含硫酸鹽廢水處理之可行性研究。實驗場址建構於中山大學校園污水廠內,屬於室外之開放空間。本研究以四支管柱做為反應槽體,並以礫石及泥炭土做為濾料,分為植物實驗組(蘆葦)及空白對照組;操作方式分為批次滿管、連續流滿管及複合式連續流。在批次滿管之操作方式,結果顯示,在提升COD進流濃度的情況下,對於硫酸鹽的去除率具有增加之趨勢。在相同的進流水濃度情況下,連續流滿管操作方式之去除效率雖然略低於批次流滿管之操作方式,但其平均去除率亦可達80%以上,去除率最高之組別為P1(泥炭土之植物組),平均值可達90%。以SO42--S 濃度500 mg/L之進流水而言,植物對於硫酸鹽移除之影響存在著正相關性。接著增加實驗水體之COD及硫酸鹽進流水濃度分別至4000 mg/L及1200 mg/L,比較單槽連續流處理及複合式連續流處理之差異,實驗結果顯示,採用複合式連續流處理之去除效率優於單槽連續流處理。
在深度實驗方面,以批次操作法的實驗數據顯示,在厭氧區域內,可觀察到氨氮減少的現象,表示在本實驗槽體內,氨氮之去除將不受溶氧濃度影響,推翻傳統所認知硝化作用必須在好氧情況下才會發生。但是以連續流操作方法下的實驗數據卻顯示,氨氮之去除仰賴於槽體上半部好氧區域內的硝化作用。而該數據亦顯示,當實驗槽體之還原電位達到-300 mV以下時,即可明顯觀察到硫酸鹽減少的現象,意即若能營造出厭氧還原態的環境,並提供適當濃度的碳源供硫酸還原菌利用,即可達到硫酸鹽的去除目的。
硫酸鹽的還原能力亦受到環境溫度之影響,以本研究來說,在20℃培養之環境條件下SRB活動力小於35℃之培養環境條件。
Abstract
The purpose of this study is to use vertical-flow constructed wetlands (VFCW) microcosm systems to investragte the removal efficiencies of sulfate. The system was located on the campus sewage treatment plant. nn National Sun Yat-sen University. In this study, two media, gravel and peat, were installed in four different systems. The two system with same media were separated into vegetated and non-vegetated (control) ones respectively. In the test runs, the operation methods included batch type filled with water, continuous flow and integrated vertical flow constructed wetland (IVCW) with continuous flow. In batch type test, it was run under an initial concentrations of SO42--S about 500 mg/L. The experimental results showed that the removal efficiencies were increased with increasing COD concentrations. Under the same conditions but with continuous flow operation, the removal efficiencies of SO42--S were lower than the batch type one, which 80% could be reached. The best system for operation was P1 (peat with vegetated), in which the removal effciency reached 90%. The experimental results also showed that the vegetated systems presented higher removal efficiencies of sulfate than the non-vegetated ones. In addition, this research were increased the concentrations of SO42--S and COD to about 1200 mg/L and 4000 mg/L respectively. The experimental results showed that the IVCW treatment system could achived greater efficiency than VFCW treatment system.
The experimental in depth research test run indicated that the anaerobic condition did not affect the removal efficiencies of ammonia by using batch type. However, nitrification was the main reaction of ammonia to nitrate in the continuous flow type systems. When ORP values were found below the -300 mV, the sulfate began to be drcreased. It was believed that if the anaerobic condition were well be established, while the organic carbon could be contented in this system, the sulfate reducing bacteria (SRB) might live, and then sulfate could be removed.
The effect of temperature on sulfate removal was generally established in this study. According to the experimental results, it was found that the activity of SRB motility was higher in higher temperature (35℃) than that in lower temperature (25℃).
目次 Table of Contents
目錄
第一章、前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章、文獻回顧 5
2.1 生態工程介紹 5
2.2 濕地功能及其定義 6
2.3 人工濕地類型及特點 8
2.4 垂直流式人工濕地介紹 11
2.4.1 複合垂直流人工濕地 13
2.5 人工濕地營養鹽去除機制 15
2.5.1 碳 15
2.5.2 氮 17
2.5.3 磷 25
2.6 硫 27
2.6.1 影響硫酸還原菌之生長因數 27
2.6.2 硫酸鹽的生物代謝過程 30
2.6.3 二價硫與含氮化合物之去除 34
2.6.4 SRB之潛在應用 37
2.7 案例介紹 38
2.7.1 垂直流人工濕地 38
2.7.2 水平流人工濕地 39
2.7.3 相關文獻整理 42
第三章、實驗設備及分析方法 45
3.1 垂直流人工濕地系統設計 45
3.1.1 系統配置 45
3.1.2 濾料與管柱特性 46
3.2 植物選擇 50
3.3 碳源之選擇 51
3.4 背景資料及氣候分析 52
3.5 採樣頻率及操作方法 53
3.6 分析及統計方法 55
3.7 實驗設計 58
第四章、結果與討論 61
4.1 背景介紹 61
4.2 實驗各階段試程之數據分析與結果討論 62
4.2.1 第一階段試程實驗(Phase I) 62
4.2.2 第二階段試程實驗(Phase II) 65
4.2.3 第三階段試程實驗(Phase III) 68
4.2.4 第四階段試程實驗(Phase IV) 73
4.2.5 第五階段試程實驗(Phase V) 79
4.2.6 第六階段試程實驗(Phase VI) 82
4.2.7 管柱剖面深度實驗 87
4.2.8 溫度實驗 98
4.3 植物種植對於硫酸鹽移除之影響性 105
4.4 COD對於硫酸鹽移除率之影響 108
4.5 氨氮去除量與硫酸鹽去除量之相關性 112
4.6 出流水pH值與硫酸鹽去除量之關係 116
4.7 單位時間體積之營養鹽移除量 118
4.8 綜合討論 121
第五章、 結論與建議 123
5.1 結論 123
5.2 建議 125
參考文獻 127
附錄一 135
附錄二 141
附錄三 144
參考文獻 References
王忠强,劉婷婷,王升忠,孟實民,吳良歡, 2007. 泥炭在環境修復中的應用研究概况和展望. 科技通報 23卷2期(2007/03), 277-281.
中央氣象局全球資訊網, 2010. http://www.cwb.gov.tw/V6/index.htm (2010.05)
司勝敏,李灤寧,柴社立,馬玖彤,崔玉果,尚文燕,劉海音,2008. 厭氧生物法處理高濃度酸性硫酸鹽廢水研究. 世界地質 27卷3期(2008/09/01), 310-313.
行政院農委會林務局, 2003. 何謂濕地. 農委會林務局自然資源與生態資料庫.
吳振斌,成水平,賀鋒,梁威,周巧紅,徐棟, 2008. 複合垂直流人工濕地. 科學出版社.
胡明成,龍騰銳, 2007. 沼氣生物脱硫新技術. 中國沼氣 25卷2期(2007/04), 15-19.
曹俊雅,張廣積,毛在砂,方兆珩,楊超, 2008. 硫酸還原菌對不同碳源的利用率. 中國有色金屬學報 18卷專期 (2008/06/10), p96-p100.
蕭文雄, 1992. 台灣市售中藥材燻硫磺情況之調查研究. 中國醫藥大學 中國藥學研究所
樊奔,姚素平,李順鹏,丁海,廖家隆, 2007. 泥炭中厭氧细菌的數量分布及其地質意義. 高校地質學報 13卷1期(2007/03), 30-34.
蔡皓程, 2007. 垂直流人工濕地氮循環過程研究與操作機制探討. 國立中山大學 海洋環境與工程學系.
劉輊超,王增長, 2008. 硫酸鹽廢水生物處理的影響因素. 科技情報開發與經濟 第18 卷第2 期, 126-127.
張龍,肖文德, 2005. 厭氧氨氧化菌混培物的培養及上流式厭氧污泥床反應器運行. 華東理工大學學報(自然科學版) 31卷1期(2005/02), 99-102.
趙慶良,李巍,徐永波,劉志剛, 厭氧附著生長反應器處理氨氮和硫酸鹽廢水的研究. 黑龍江大學自然科學學報 24卷4期(2007/08/25), 421-426.
陳婷婷,鄭平,胡寶蘭, 2009. 厭氧氨氧化菌的物種多樣性與生態分布. 應用生態學報 20卷5期(2009/05), 1229-1235.
Allen, W.C., Hook, P.B., Biederman, J.A., Stein, O.R., 2002. Temperature and wetland plant species effects on wastewater treatment and root zone oxidation. Environmental Quality 31, 1010-1016.
Armstrong, W., Armstrong, J., Beckett, P.M., 1990. Measurement and modeling of oxygen release from roots of Phragmites australis. in: P.F. Cooper, B.C. Findlater (Eds.), Constructed Wetland In Water Pollution Control. Pergamon Press, Oxford, UK, pp. 41-51.
An, S.J., Tang, K., Nemati, M., 2010. Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: Effects of sulphide loading rate and sulphide to nitrate loading ratio. Water Research 44, 1531-1541.
ASTM, 1969, Standard D-2797, ASTM Standard manual.
Brune, A., Frenzel, P., Cypionka, H., 2000. Life at the oxic-anoxic interface: microbial activities and adaptations. Fems Microbiology Reviews 24, 691-710.
Cardoso, R.B., Sierra-Alvarez, R., Rowlette, P., Flores, E.R., Gomez, J., Field, J.A., 2006. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and Bioengineering 95, 1148-1157.
Choi, E., Rim, J.M., 1991. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Science and Technology 23, 1259-1264.
Comeau, Y., Hall, K.J., Hancock, R.E.W., Oldham, W.K., 1986. Biochemical-Model for enhanced biological phosphorus removal. Water Research 20, 1511-1521.
Cypionka, H., 2000. Oxygen respiration by Desulfovibrio species. Annual Review of Microbiology 54, 827-848.
Deboer, W., Tietema, A., Gunnewiek, P., Laanbroek, H.J., 1992. The chemolithotrophic ammonium-oxidizing community in anitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biology & Biochemistry 24, 229-234.
De Graaf, A.A.V., deBruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G., 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-UK 142, 2187-2196.
Dong, Z.Q., Sun, T.H., 2007. A potential new process for improving nitrogen removal in constructed wetlands - Promoting coexistence of partial-nitrification and ANAMMOX. Ecological Engineering 31, 69-78.
Dudai, N., Putievsky, E., Chaimovitch, D., Ben-Hur, M., 2006. Growth management of vetiver (Vetiveria zizanioides) under Mediterranean conditions. Journal of Environmental Management 81, 63-71.
Egli, K., Fanger, U., Alvarez, P.J.J., Siegrist, H., van der Meer, J.R., Zehnder, A.J.B., 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology 175, 198-207.
Elliott, P., Ragusa, S., Catcheside, D., 1998. Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Research 32, 3724-3730.
Fang, H.H.P., Liu, Y., Chen, T., 1997. Effect of sulfate on anaerobic degradation of benzoate in UASB reactors. Journal of Environmental Engineering-Asce 123, 320-328.
Fdz-Polanco, F., Fdz-Polanco, M., Fernandez, N., Uruena, M.A., Garcia, P.A., Villaverde, S., 2001. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions. Water Research 35, 1111-1114.
Gadekar, S., Nemati, M., Hill, G.A., 2006. Batch and continuous biooxidation of sulphide by Thiomicrospira sp CVO: Reaction kinetics and stoichiometry. Water Research 40, 2436-2446.
Hammer, D.A., 1992. Designing constructed wetlands systems to treat agricultural nonpoint source pollution. Ecological Engineering 1, 49-82.
Hanaki, K., Hong, Z., Matsuo, T., 1992. Production of nitrous-oxide gas during denitrification of waste-water. Water Science and Technology 26, 1027-1036.
Her, J.J., Huang, J.S., 1995. Influences of carbon surface and C/N ratio on nitrate nitrite denitrification and carbon breakthrough. Bioresource Technology 54, 45-51.
Holmer, M., Storkholm, P., 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology 46, 431-451.
Howes, B.L., Teal, J.M., Peterson, S., 2005. Experimental Phragmites control through enhanced sediment sulfur cycling. Ecological Engineering 25, 292-303.
Jennifer L.F., Mark D.B., Otto R.S., Anne K.C. 2009. Characterization of Sulfate Reducing Bacteria in Constructed Wetlands. 11th International Conference on Wetland System for Water Pollution Control.
Jetten, M.S.M., Strous, M., van de Pas-Schoonen, K.T., Schalk, J., van Dongen, U., van de Graaf, A.A., Logemann, S., Muyzer, G., van Loosdrecht, M.C.M., Kuenen, J.G., 1998. The anaerobic oxidation of ammonium. Fems Microbiology Reviews 22, 421-437.
Jong, T., Parry, D.L., 2003. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Research 37, 3379-3389.
Kanagawa, T., Mikami, E., 1989. Removal of methanethiol, dimethyl sulfide, disulfide, and hydrogen-sulfide from contaminated air by Thiobacillus-Thioparus TK-M. Applied and Environmental Microbiology 55, 555-558.
Kang, J., Wang, J.L., 2006. Influence of chemical oxygen demand concentrations on anaerobic ammonium oxidation by granular sludge from EGSB reactor. Biomedical and Environmental Sciences 19, 192-196.
Kartal, B., Koleva, M., Arsov, R., van der Star, W., Jetten, M.S.M., Strous, M., 2006. Adaptation of a freshwater anammox population to high salinity wastewater. Journal of Biotechnology 126, 546-553.
Kartal, B., Rattray, J., van Niftrik, L.A., van de Vossenberg, J., Schmid, M.C., Webb, R.I., Schouten, S., Fuerst, J.A., Damste, J.S.S., Jetten, M.S.M., Strous, M., 2007. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology 30, 39-49.
Kowalchuk, G.A., Stephen, J.R., 2001. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Review of Microbiology 55, 485-529.
Kuo, W.C., Shu, T.Y., 2004. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. Journal of Hazardous Materials 113, 149-157.
Lens, P.N.L., Visser, A., Janssen, A.J.H., Pol, L.W.H., Lettinga, G., 1998. Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Environmental Science and Technology 28, 41-88.
Liamleam, W., Annachhatre, A.P., 2007. Electron donors for biological sulfate reduction. Biotechnology Advances 25, 452-463.
Lloyd, J.R., Klessa, D.A., Parry, D.L., Buck, P., Brown, N.L., 2004. Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis. Water Research 38, 1822-1830.
Lloyd, J.R., Mabbett, A.N., Williams, D.R., Macaskie, L.E., 2001. Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59, 327-337.
Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., Gersberg, R.M., 2001. Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering 18, 157-171.
M. Syed, G.S., P. Falletta ,M. Béland, 2006. Removal of hydrogen sulfide from gas streams using biological processes - A review.
Maillacheruvu, K.Y., Parkin, G.F., Peng, C.Y., Kuo, W.C., Oonge, Z.I., Lebduschka, V., 1993. Sulfide toxicity in anaerobic system fed sulfate and various organics. Water Environment Research 65, 100-109.
Maree, J.P., Greben, H.A., de Beer, M., 2004. Treatment of acid and sulphate-rich effluents in an integrated biological/chemical process. Water Sa 30, 183-189.
Mitsch, W.J., Gosselink, J.G., 1998a. Values and valuation of wetlands.Wetlands. John Wiley New York, 571-660.
Mitsch, W.J., Gosselink, J.G., 1998b. The water environment. Wetlands. John Wiley New York, 107-155.
Mitsch, W.J., Gosselink, J.G.,, 1998c. Definitions of Wetlands. Wetlands. John Wiley New York, 25-34.
Mitsch, W.J., Jørgensen, S.E., 2004. Applications of ecological engineering. Ecological engineering and Ecosystem restoration. John Wiley & Sons, Inc. New Jersey, 103-336.
Mizuno, O., Li, Y.Y., Noike, T., 1998. The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion. Water Research 32, 1626-1634.
Morris, M.C., 1999. The effects of substrate particle size, depth and vegetation on ammonia removal in a vertical flow constructed wetland.in: J. Vymazal (Ed.) Nutrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishers Leiden, 31-40.
Mulder, A., Vandegraaf, A.A., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic ammonium oxidation discovered in a dentrifying fludized-bed reactor. FEMS Microbiology Ecology 16, 177-183.
O'Flaherty, V., Lens, P., Leahy, B., Colleran, E., 1998. Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Research 32, 815-825.
Odum, E.P., 1971. Funamentals of Ecology. 3rd.
Otte, S., Schalk, J., Kuenen, J.G., Jetten, M.S.M., 1999. Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis. Applied Microbiology and Biotechnology 51, 255-261.
Parkin, G.F., Lynch, N.A., Kuo, W.C., Vankeuren, E.L., Bhattacharya, S.K., 1990. Interaction between sulfate reducers and methanogens fed acetate and propionate. Research Journal of the Water Pollution Control Federation 62, 780-788.
Platzer, C., 2000. Development of Reed Bed System- A Europea Perspective. In Proceeding of 7th international conference on wetland system for water pollution control.11~16 Nov. Floria.
Postgate, J.R., 1979. The sulphate-reducing bacteria. Cambridge. Cambridge University Press., 9-23.
Reed S. C, C.R.W., Middlebrooks E. J, 1995. Natural systems for waste manageent and treatment.2ed. McGraw-Hill. New York.
Riefler, R.G., Krohn, J., Stuart, B., Socotch, C., 2008. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage. Science of the Total Environment 394, 222-229.
Ripple, W., 2003. 4th Annual Lagoon Operators Round Table Discussion Ashland WWTF. NHDES.
Siegrist, H., Reithaar, S., Koch, G., Lais, P., 1998. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Water Science and Technology 38, 241-248.
Silva, A.J., Varesche, M.B., Foresti, E., Zaiat, M., 2002. Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor. Process Biochemistry 37, 927-935.
Stein, O.R., Borden-Stewart, D.J., Hook, P.B., Jones, W.L., 2007. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Water Research 41, 3440-3448.
Stein, O.R., Hook, P.B., 2005. Temperature, plants, and oxygen: How does season affect constructed wetland performance? Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 40, 1331-1342.
Stephenson, R.J., Branion, R.M.R., Pinder, K.L., 1994. Anaerobic 25℃ and 35℃treatment of a bctmp tem effluent – sulfur management strategies. Water Science and Technology 29, 433-445.
Strous, M., Kuenen, J.G., Jetten, M.S.M., 1999. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology 65, 3248-3250.
Strous, M., vanGerven, E., Kuenen, J.G., Jetten, M., 1997a. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Applied and Environmental Microbiology 63, 2446-2448.
Strous, M., VanGerven, E., Zheng, P., Kuenen, J.G., Jetten, M.S.M., 1997b. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Research 31, 1955-1962.
Thamdrup, B., Dalsgaard, T., 2002. Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology 68, 1312-1318.
Thomas, P.R., Glover, P., Kalaroopan, T., 1995. An evaluation of pollutant removal from secondary treated sewage effluent using a constructed wetland system. Water Science and Technology 32, 87-93.
Vandegraaf, A.A., Mulder, A., Debruijn, P., Jetten, M.S.M., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic oxidation of oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology 61, 1246-1251.
Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380, 48-65.
Vymazal, J., Brix, H., Cooper, P.F., Green, M.B., Haberl, R., 1998. Removal mechsnisms and types of constructed wetlands Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers Czech Rpublic, 17-66.
Webb, J.S., McGinness, S., Lappin-Scott, H.M., 1998. Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. Journal of Applied Microbiology 84, 240-248.
Wiessner, A., Kappelmeyer, U., Kuschk, P., Kastner, M., 2005. Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Research 39, 4643-4650.
Yang, Z.Q., Zhou, S.Q., Sun, Y.B., 2009. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor. Journal of Hazardous Materials 169, 113-118.
Zhang, L., Zheng, P., He, Y.H., Jin, R.C., 2009. Performance of sulfate-dependent anaerobic ammonium oxidation. Science in China Series B-Chemistry 52, 86-92.
Zhao, Q.I., Li, W., You, S.J., 2006. Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor. Water Science and Technology 54, 27-35.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code