Responsive image
博碩士論文 etd-0722110-155631 詳細資訊
Title page for etd-0722110-155631
論文名稱
Title
氧化鎵與氧化銦鎵在電阻式非揮發性記憶體之製作與研究
Fabrication and investigation of GaOx and InGaOx insulator for nonvolatile resistance memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-17
繳交日期
Date of Submission
2010-07-22
關鍵字
Keywords
氧化銦鎵、電阻式記憶體、氧化鎵
RRAM, InGaOx, GaOx
統計
Statistics
本論文已被瀏覽 5652 次,被下載 0
The thesis/dissertation has been browsed 5652 times, has been downloaded 0 times.
中文摘要
近年來,非揮發性記憶體受到尺寸持續微縮的影響,造成元件產生非理想
效應。傳統浮動閘極(Floating gate)記憶體在操作過程中,若穿遂氧化層產生漏電
途徑,會使得儲存電荷藉由漏電途徑回到矽基板,造成儲存電荷流失。隨著元件
尺寸持續微縮,此情況會更加嚴重。為了提升記憶體性能,許多新型態的記憶體
逐漸被開發出來。其中,電阻式非揮發性記憶體(Resistive Random Access Memory,
RRAM)具有結構上的優勢,且擁有低耗能、高速率操作、良好的可靠度等優點,
可望能取代傳統浮動閘極記憶體。然而,電阻轉換效應的機制眾說紛紜,其研究
發展受到學術界及業界眾多矚目。
在本論文中,我們使用的介電質材料分為氧化鎵(GaOx)及氧化銦鎵(InGaOx,
IGO)。在二氧化矽的矽晶圓上沈積一層氮化鈦(TiN)當作下電極,接著利用靶磁
控濺鍍系統( Multi-Target Sputter ),分別鍍製300Å 的GaOx 與IGO 薄膜於TiN
電極上方,最後再沈積白金(Pt)作為上電極,形成Pt/GaOx/TiN 及Pt/IGO/TiN 三
明治結構之電阻式記憶體元件。藉由電性量測,我們可以觀察到Pt/GaOx/TiN 的
電阻轉換特性為雙極性轉換效應(Bipolar resistance switching),而Pt/IGO/TiN 的
電阻轉換特性為雙極性轉換效應跟單極性轉換效應(Unipolar resistance switching)
Pt/GaOx/TiN 跟Pt/IGO/TiN 在升溫持久度(Retention)量測及一萬次連續寫入抹除
的抗劣化性(Endurance)都可以維持不錯的穩定度。並且利用變溫量測來觀察電阻
在高、低阻態的變化情形,並驗證其導電路徑的機制。
同樣地,我們在薄膜製程中通入氧氣,達到氧化層俢補作用及降低薄膜缺
陷。藉由XPS 分析,我們發現在製程中通入氧氣的薄膜,可補足鍵結不完全的
部分,使得薄膜的穩定度增加。根據後續的電性量測,在製程中通入氧氣的GaOx
跟IGO 薄膜,電阻切換特性是穩定的。
我們成功找尋到新的電阻式記憶體材料:GaOx及IGO薄膜,而它們都確實擁
有電阻式記憶體的電流特性,並且在電流切換特性上有相當程度的穩定度。由於
鎵、銦廣泛的運用在光電半導體中,其製造技術可以直接應用於現階段積體電路
製程。
Abstract
Recently, the development of nonvolatile memory (NVM) is influence by scaling
down. When the device is miniaturized continuously, the tunnel oxide layer of the
floating gate will get thinner. In consequence the charges could leak into the substrate
and lead to loss all of stored information. In order to enhance the performance of the
non-volatility memory, the new generation non-volatile memories have been
developed. Advantages of the resistive random access memory (RRAM) are simple
structure, lower consumption of energy, higher operating speed and higher endurance.
RRAM might be expected to replace the memory of traditional floating gate. However,
the mechanisms of RRAM were controversial and more investigations were needed.
The aim of this study is to develop new material and theory by using the
insulator of GaOx and IGO (InGaOx, IGO). The bottom electrode (TiN) was deposited
on the substrate of Si2O3. The GaOx (300Å) and IGO (300Å) thin film were deposited
on the bottom electrode of TiN by Multi-Target Sputter. Then, the top electrode (Pt)
was deposited on the insulator. The sandwiched structure of Pt/GaOx/TiN and
Pt/IGO/TiN device was completed. Based on electrical measuring, the resistance
switching feature of Pt/GaOx/TiN is bipolar. The resistance switching features of
Pt/IGO/TiN are both bipolar and unipolar. The reliability of the device of
Pt/GaOx/TiN and Pt/IGO/TiN were maintained by retention at 85°C and 104 cycles
endurance. In order to study the device switching mechanisms, we measured the
resistance of the Rlow state and Rhigh state and observed the change of the resistance in
different temperature.
In the similar process, we sputter GaOx and IGO target with Ar gas mixes O2 gas,
in order to decrease the defect of thin film. By XPS analyzing, the thin film was stable
because the insulator sputter with Ar gas mixed O2 gas has sufficient oxygen. Based
on electrical measuring, the resistance switching of Pt/GaOx/TiN and Pt/IGO/TiN
which was sputter with Ar gas mixes O2 gas was stable.
We succeeded to find new material of RRAM which is GaOx and IGO. They
have the characteristics of stable resistance switching. Wide application of In and Ga
in modern optoelectronic semiconductor industry. These fabrication techniques can be
applied to the manufacture process of semiconductor industry.
目次 Table of Contents
Abstract (Chinese) ……………………………………………………...I
Abstract (English) …………………………………………………….III
Acknowledgement ……………………………………………………...V
Contents …………………………………………………………….....VI
Table Captions ………………………………………………………...IX
Figure Captions ………………………………………………………...X
Chapter 1 Introduction ………………………………………………...1
Chapter 2 Literature
2.1 Introduction of memory ……………………………………………2
2.2 Emerging non-volatile memories
2.2.1 FeRAM (Ferroelectric RAM) .....................................................3
2.2.2 MRAM (Magnetic RAM) ..........................................................3
2.2.3 PCRAM (Phase change RAM) ...................................................4
2.2.4 RRAM (Resistance RAM) .........................................................4
2.3 The materials of Resistive RAM
2.3.1 Perovskite................................................................................5
2.3.2 Transition metal oxide................................................................6
2.3.3 Organic materials......................................................................6
2.4 The switching mechanism of Resistive RAM
2.4.1 Filamentary model.....................................................................7
2.4.2 Charge-trap in small domain.......................................................7
2.4.3 Conducting path........................................................................8
2.5 The mechanism of current conduction
2.5.1 Ohmic conduction.....................................................................8
2.5.2 Tunneling conduction.................................................................9
2.5.3 Schottky emission.....................................................................9
2.5.4 Frenkel -Poole emission...........................................................10
2.5.5 Space charge limited current.....................................................10
Chapter 3 Resistive RRAM characteristics of GaOx
3.1 Results for GaOx without O2 flow
3.1.1 Experimental procedures..........................................................17
3.1.2 Basic characteristics of GaOx....................................................18
3.1.3 Endurance and Retention..........................................................19
3.1.4 Multi-level characteristic..........................................................19
3.1.5 Current-Voltage curve fitting.....................................................20
3.2 Results for GaOx with O2 flow
3.2.1 Experimental procedures..........................................................21
3.2.2 Basic characteristics of GaOx....................................................21
3.2.3 Endurance and Retention..........................................................22
3.2.4 Current-Voltage curve fitting.....................................................22
3.3 Discussion
3.3.1 Change Temperature................................................................23
3.3.2 Calculate the real switch thickness.............................................23
3.3.3 Chemical analysis by XPS........................................................24
3.3.4 Basic characteristic of mechanism..............................................25
Chapter 4 Resistive RRAM characteristics of IGO
4.1 Results for IGO without O2 flow
4.1.1 Experimental procedures..........................................................47
4.1.2 Basic characteristics of IGO......................................................48
4.2 Results for IGO with O2 flow
4.2.1 Experimental procedures..........................................................49
4.2.2 Basic characteristics of IGO......................................................50
4.2.3 Endurance and Retention..........................................................51
4.2.4 Current- Voltage curve fitting....................................................52
4.3 Discussion
4.3.1 Change Temperature................................................................52
4.3.2 Basic characteristic of mechanism..............................................53
Chapter 5 Conclusion.............................................................................74
References................................................................................................76
參考文獻 References
[1] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and
Recai Sezi, IEEE, 2004
[2] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介,
國研科技創刊號,2004 年
[3] I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, IEDM Tech.
Dig., 2005: p. 587-590
[4] 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—
現在與未來”,物理雙月刊廿六期四卷,2004 年
[5] B.P Andreasson, M. Janousch, U. Staub, G.I. Meijer, B. Delley “Resistive
switching in Cr-doped SrTiO3: An X-ray absorption spectroscopy study”,
Materials Science and Engineering B 144(2007) 60-63
[6] Chih-Yi Liu, Pei-Hsun Wu, Arthur Wang et al. “Bistable resistive switching of a
sputter-deposited Cr-doped SrZrO3 memory film”, IEEE, VOL. 26, NO. 6, JUNE
2005
[7] Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-Hsi Lin“Resistive
switching mechanisms of V-doped SrZrO3 memory film”,IEEE, VOL. 27, NO. 9,
SEPTERMBER 2006
[8] Daniel Hsu, J.G.Lin, W.F.Wu“Resistive switching effects in Nd0.7Ca0.3MnO3
manganite”,Journal of Magnetism and Magnetic Materials 310(2007) 978-980
[9] A. Beck, J. G. Bednorz et al., “Reproducible switching effect in thin oxide films
for memory applications”, Applied Physics Letters, 77, 2000
[10] Chun-Chieh Lin, Jung-Sheng Yu, Chih-Yang Lin et al., “Stable resistive
switching behaviors of sputter deposited V-doped SrZrO3thin films”, Thin solid
films 516 (2007) 402-406
77
[11] S. Seo, M. J. Lee et al.,”Reproducible resistance switching in polycrystalline NiO
films”, Applied Physics Letters, 85(23), 2004
[12] L. P. Ma, J. Liu et al.,” Organic electrical bistable devices and rewritable memory
cells”, Applied Physics Letters, 80(16), 2002
[13] Akihito Sawa, “Resistive switching in transition metal oxide”, materials today,
11(6), 2008, p.28~36
[14] Y. Sato, K. Kinoshita, M. Aoki, "Consideration of switching mechanism of
binary metal oxide resistive junctions using a thermal reaction model," Applied
Physics Letters 90, 033503, 2007
[15] M. J. Rozenberg, I. H. Inoue et al., “Nonvolatile memory with Multilevel
Switching: A Basic Model”, Physical Review Letter, 2004
[16] M. Fujimoto, H. Koyama et al., “TiO2 anatase nanolayer on TiN thin film
exhibiting high-speed bipolar resistive switching ” , Applied Physics Letters, 89,
223509, 2006
[17] 施敏、伍國珏,“半導體元件物理學”,2008 年
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.171.121
論文開放下載的時間是 校外不公開

Your IP address is 3.137.171.121
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code