Responsive image
博碩士論文 etd-0722111-113546 詳細資訊
Title page for etd-0722111-113546
論文名稱
Title
雄性激素受體基因剔除之小鼠在骨折癒合時骨痂形成的微電腦斷層掃描分析
Micro-CT analysis of callus formation in androgen receptor knockout mice during fracture healing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-28
繳交日期
Date of Submission
2011-07-22
關鍵字
Keywords
骨折、骨癒合、骨痂組織、微電腦斷層掃描、雄性素受體、雄性激素基因剔除鼠模型、礦化作用
mineralization, bone fracture, androgen receptor, bone healing, global androgen receptor knockout mice model, androgen, micro computed tomography, callus
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
骨折固定後的修復需要一系列的炎症反應然後產生癒傷組織,骨頭癒合完成後便開始進行癒傷組織的重塑,骨折癒合是一個複雜的過程,有多個相互重疊的階段,包括發炎反應,軟骨形成與骨重塑,有許多內在或外在因素可能對骨折癒合造成影響,導致骨癒合延遲或無法癒合。雄性激素受體基因剔除的小鼠已經知道在軟骨內成骨的骨量減少,成骨細胞礦化能力降低,但對於骨折癒合時癒傷組織的形成所造成的影響仍不清楚。此篇研究主要是去探討小鼠骨折時,在骨折癒合的過程中,野生型小鼠和雄性激素受體基因剔除小鼠之雄性激素與雄性激素受體對於骨痂組織形成、礦化作用與骨重塑時所扮演的角色,因此,以動物實驗進行長期微型電腦斷層掃瞄的觀察,以確認雄性激素荷爾蒙調節作用在骨折癒合過程中其機制或流程之必要性與關聯性,並應用動物用體內微電腦斷層掃描儀,建立在不同的時間點,野生型小鼠和雄性激素受基因體剔除之小鼠在骨折癒合時的三維模型結構圖像,觀察癒合過程中骨痂組織微結構的發展情形,以達研究雄性激素與雄性激素受體在骨折癒合過程中,對於骨痂組織形成、礦化作用與骨重塑之微結構變化的影響,為進一步了解雄性激素和雄性激素受體在毎個過程中的影響,以組織切片染色觀察骨痂的組織型態變化,觀察骨痂中膠原組織,纖維組織與骨組織的分佈比例與位置。經實驗結果發現,雄性激素受體基因剔除小鼠較野生型小鼠的骨頭痊癒的速度慢,且年長的雄性激素受體基因剔除小鼠較年輕的雄性激素受體基因剔除小鼠之骨癒合的情況不好,去勢後使小鼠骨癒合的情況變更差,綜合以上結果,可能是性荷爾蒙在骨頭癒合的過程中所產生的影響。因此,雄性激素及雄性激素受體作用對於影響骨折癒合時,骨骼的修復和重建扮演著重要的調節者,往後可應用於治療骨質疏鬆症影響造成的骨折,對於骨折癒合相當具有效益。
Abstract
Fracture healing requires a series of events including inflammatory response and callus formation, callus remodeling and bone healing. Fracture healing is a complex process, there are several overlapping phases , including inflammation , cartilage formation and bone remodeling, there are many internal or external factors could impact on fracture healing, leading to delayed bone healing or non healing. The global androgen receptor knockout (GARKO) mice has been know to reduce bone mass in endochondral bone and osteoblast mineralization, but the impact for callus formation in fracture healing is still unclear. The goals of study is to investigate the role of androgen and androgen receptor in wild-type (WT) mice and GARKO mice after fracture healing during callus formation and bone mineralization and bone remodeling. Therefore, long-term animal experiments observed by micro-computed tomography to study the roles of androgen and androgen receptor on the process and mechanisms of fracture healing is necessary. We applied in vivo micro-computer tomography (Micro-CT) to build up the three-dimensional model images at different time points for wild-type mice and GARKO mice after fracture healing and observe the bone healing process of micro-structure of the development of callus during fracture healing. The callus tissue morphology observed by histological staining to study the proportion and position of collagen, fibrous tissue and bone. The results show that the healing of WT mice is better than GARKO mice. GARKO mice develop smaller callus size and less bone volume and show delayed healing. In general, orchiectomy (ORX) decreases callus size in WT mice but not in GARKO mice. However, the healing rate of elderly GARKO mice is not obvious in comparison with young GARKO mice. Together, our study demonstrated that the androgen and androgen receptor regulate fracture healing and play an important role in bone repair and healing. Our mouse model may be used for the therapeutic drug screening of bone fractures caused by osteoporosis.
目次 Table of Contents
目錄
中文摘要..........................................................................................................................1
英文摘要..........................................................................................................................3
目錄.................................................................................................................................5
圖表目錄..........................................................................................................................7
符號及縮寫......................................................................................................................8
第一章 前言....................................................................................................................9
(一)骨頭的生成與代謝..........................................................................................9
(二)骨質疏鬆症....................................................................................................10
(三) 淺談骨折與骨癒合.......................................................................................11
(四) 雄性激素與雄性激素受體的作用途徑......................................................13
(五)研究目的........................................................................................................14
第二章 實驗材料與方法..............................................................................................15
第一節 實驗動物與切片製作..............................................................................15
第二節 一般組織染色..........................................................................................19
第三節 微電腦斷層掃描 (Micro computed tomography, Micro-CT)...........21
第四節 微電腦斷層掃描定量結果之統計分析..................................................23
第三章 結果..................................................................................................................24
第一節 比較野生型小鼠和雄性激素受體基因剔除之小鼠,在去勢前與去勢後,骨折後第7,14,21,28,42天骨癒合的二維模型結構圖像之結果..............................................................................................24
第二節 比較野生型小鼠和雄性激素受體基因剔除之小鼠,去勢前後,在骨折後第14,21,28,42天的骨癒合三維模型結構圖像與定量之結果......................................................................................................24
第三節 比較年輕與年老,去勢前後,雄性激素受體基因剔除之小鼠在骨折後第21,28的骨癒合三維模型結構圖像與定量之結果............26
第四節 比較野生型和雄性激素受體基因剔除之小鼠,去勢前後,在骨折後第21天的組織學染色結果............................................................28
第五節 比較年輕與年老雄性激素受體基因剔除之小鼠,去勢前後,在骨折後第28天的組織學染色結果........................................................29
第四章 討論..................................................................................................................31
雄性激素與雄性激素受體基因影響骨痂形成過程的探討................................31
骨折後骨痂形成過程的組織學形態變化............................................................32
骨痂形成過程相關生物標記的探討....................................................................33
動物實驗在骨折手術仍須克服的問題................................................................34
雄性激素與雄性激素受體基因在骨折後修復的運用........................................35
第五章 結論..................................................................................................................37
參考文獻........................................................................................................................38
附錄一 圖表..................................................................................................................50
附錄二 藥品..................................................................................................................59
附錄三 試劑配方..........................................................................................................60
參考文獻 References
王雪娥, 陳明宏. 2004. 骨重塑生化標記. 醫檢會報. 2:68-74.
李軍, 朱德生, 包尚聯. 2009. 顯微CT技術及其在生物醫學領域的應用. 現代儀器. 第六期:19-28.
邱家昌. 2008. 骨折癒合. 生物醫學. 第一卷:264-273.
張志仰. 2006. 雄性素與胚胎學. 義大醫院婦產部生殖醫學新知. 2:13-19.
蔡孟穎. 2006. 雄性素與雄性素受體影響濾泡形成與卵成熟的機轉的探討. 高雄長庚婦產部生殖醫學新知. 4:24-30.
藍國忠. 2006. Androgen, Androgen Receptor and Spermatogenesis. 高雄長庚婦產部生殖醫學新知. 4:20-23.
Adachi, T., Y. Aonuma, S.-i. Ito, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka. 2009. Osteocyte calcium signaling response to bone matrix deformation. Journal of Biomechanics. 42:2507-2512.
Adams, C.S., and I.M. Shapiro. 2002. The Fate of the Terminally Differentiated Chondrocyte: Evidence for Microenvironmental Regulation of Chondrocyte Apoptosis. Critical Reviews in Oral Biology & Medicine. 13:465-473.
Ahmed, Y.A., L. Tatarczuch, C.N. Pagel, H.M.S. Davies, M. Mirams, and E.J. Mackie. 2007. Physiological death of hypertrophic chondrocytes. Osteoarthritis and Cartilage. 15:575-586.
Ai-Aql, Z.S., A.S. Alagl, D.T. Graves, L.C. Gerstenfeld, and T.A. Einhorn. 2008. Molecular Mechanisms Controlling Bone Formation during Fracture Healing and Distraction Osteogenesis. Journal of Dental Research. 87:107-118.
Arnold, M.A., Y. Kim, M.P. Czubryt, D. Phan, J. McAnally, X. Qi, J.M. Shelton, J.A. Richardson, R. Bassel-Duby, and E.N. Olson. 2007. MEF2C Transcription Factor Controls Chondrocyte Hypertrophy and Bone Development. Developmental Cell. 12:377-389.
Baldik, Y., A.D. Diwan, R.C. Appleyard, Z. Ming Fang, Y. Wang, and G.A.C. Murrell. 2005. Deletion of iNOS gene impairs mouse fracture healing. Bone. 37:32-36.
Bouillon, R. 2004. Estrogens Are Essential for Male Pubertal Periosteal Bone Expansion. Journal of Clinical Endocrinology & Metabolism. 89:6025-6029.
Burge, R., B. Dawson-Hughes, D.H. Solomon, J.B. Wong, A. King, and A. Tosteson. 2006. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005-2025. Journal of Bone and Mineral Research. 22:465-475.
Byers, P., and R. Brown. 2006. Cell columns in articular cartilage physes questioned: a review. Osteoarthritis and Cartilage. 14:3-12.
Campbell, G.M., H.R. Buie, and S.K. Boyd. 2008. Signs of irreversible architectural changes occur early in the development of experimental osteoporosis as assessed by in vivo micro-CT. Osteoporosis International. 19:1409-1419.
Cheung, K.M.C., K. Kaluarachi, G. Andrew, W. Lu, D. Chan, and K.S.E. Cheah. 2003. An externally fixed femoral fracture model for mice. Journal of Orthopaedic Research. 21:685-690.
Claes, L., J. Schmalenbach, M. Herrmann, I. Ölkü, P. Garcia, T. Histing, R. Obeid, H. Schorr, W. Herrmann, T. Pohlemann, M.D. Menger, and J.H. Holstein. 2009. Hyperhomocysteinemia Is Associated with Impaired Fracture Healing in Mice. Calcified Tissue International. 85:17-21.
Colnot, C. 2001. Uncoupling of Chondrocyte Death and Vascular Invasion in Mouse Galectin 3 Null Mutant Bones. Developmental Biology. 229:203-214.
de Sanctis, M., F. Vignoletti, N. Discepoli, G. Zucchelli, and M. Sanz. 2009. Immediate implants at fresh extraction sockets: bone healing in four different implant systems. Journal of Clinical Periodontology. 36:705-711.
Ding, W.G., S.D. Jiang, Y.H. Zhang, L.S. Jiang, and L.Y. Dai. 2010. Bone loss and impaired fracture healing in spinal cord injured mice. Osteoporosis International. 22:507-515.
Duvall, C.L., W.R. Taylor, D. Weiss, A.M. Wojtowicz, and R.E. Guldberg. 2006. Impaired Angiogenesis, Early Callus Formation, and Late Stage Remodeling in Fracture Healing of Osteopontin-Deficient Mice. Journal of Bone and Mineral Research. 22:286-297.
Garcia, P., J.H. Holstein, T. Histing, M. Burkhardt, U. Culemann, A. Pizanis, R.J. Wirbel, T. Pohlemann, and M.D. Menger. 2008. A new technique for internal fixation of femoral fractures in mice: Impact of stability on fracture healing. Journal of Biomechanics. 41:1689-1696.
Garrett, I.R., G.E. Gutierrez, G. Rossini, J. Nyman, B. McCluskey, A. Flores, and G.R. Mundy. 2007. Locally delivered lovastatin nanoparticles enhance fracture healing in rats. Journal of Orthopaedic Research. 25:1351-1357.
Gerstenfeld, L.C., D.M. Cullinane, G.L. Barnes, D.T. Graves, and T.A. Einhorn. 2003. Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. Journal of Cellular Biochemistry. 88:873-884.
Gröngröft, I., P. Heil, R. Matthys, P. Lezuo, A. Tami, S. Perren, P. Montavon, and K. Ito. 2009. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union. Journal of Biomechanics. 42:2089-2096.
Guggenbuhl, P., F. Bodic, L. Hamel, M.F. Baslé, and D. Chappard. 2006. Texture analysis of X-ray radiographs of iliac bone is correlated with bone micro-CT. Osteoporosis International. 17:447-454.
Henle, P., G. Zimmermann, and S. Weiss. 2005. Matrix metalloproteinases and failed fracture healing. Bone. 37:791-798.
Holstein, J.H., R. Matthys, T. Histing, S.C. Becker, M. Fiedler, P. Garcia, C. Meier, T. Pohlemann, and M.D. Menger. 2009. Development of a Stable Closed Femoral Fracture Model in Mice. Journal of Surgical Research. 153:71-75.
Kang, H.-Y., C.-R. Shyr, C.-K. Huang, M.-Y. Tsai, H. Orimo, P.-C. Lin, C. Chang, and K.-E. Huang. 2008. Altered TNSALP Expression and Phosphate Regulation Contribute to Reduced Mineralization in Mice Lacking Androgen Receptor. Molecular and Cellular Biology. 28:7354-7367.
Kang, H.Y., C.L. Cho, K.L. Huang, J.C. Wang, Y.C. Hu, H.K. Lin, C. Chang, and K.E. Huang. 2004. Non-genomic Androgen Activation of Phosphatidylinositol 3-Kinase/Akt Signaling Pathway in MC3T3-E1 Osteoblasts. Journal of Bone and Mineral Research. 19:1181-1190.
Kawanami, A., T. Matsushita, Y.Y. Chan, and S. Murakami. 2009. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochemical and Biophysical Research Communications. 386:477-482.
Li, M., D. Healy, Y. Li, H. Simmons, D. Crawford, H. Ke, L. Pan, T. Brown, and D. Thompson. 2005. Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone. 37:46-54.
Lu, C., T. Miclau, D. Hu, and R.S. Marcucio. 2007. Ischemia leads to delayed union during fracture healing: A mouse model. Journal of Orthopaedic Research. 25:51-61.
Luiz de Freitas, P.H., M. Li, T. Ninomiya, M. Nakamura, S. Ubaidus, K. Oda, N. Udagawa, T. Maeda, R. Takagi, and N. Amizuka. 2009. Intermittent PTH Administration Stimulates Pre-Osteoblastic Proliferation Without Leading to Enhanced Bone Formation in Osteoclast-Lessc-fos−/−Mice. Journal of Bone and Mineral Research. 24:1586-1597.
Mödder, U.I., and S. Khosla. 2008. Skeletal stem/osteoprogenitor cells: Current concepts, alternate hypotheses, and relationship to the bone remodeling compartment. Journal of Cellular Biochemistry. 103:393-400.
Mackie, E.J., Y.A. Ahmed, L. Tatarczuch, K.S. Chen, and M. Mirams. 2008. Endochondral ossification: How cartilage is converted into bone in the developing skeleton. The International Journal of Biochemistry & Cell Biology. 40:46-62.
McDonald, S.J., P.C. Dooley, A.C. McDonald, J.A. Schuijers, A.R. Ward, and B.L. Grills. 2009. Early fracture callus displays smooth muscle-like viscoelastic properties ex vivo: Implications for fracture healing. Journal of Orthopaedic Research. 27:1508-1513.
McGlashan, S., C. Haycraft, C. Jensen, B. Yoder, and C. Poole. 2007. Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biology. 26:234-246.
Minamizaki, T., Y. Yoshiko, K. Kozai, J.E. Aubin, and N. Maeda. 2009. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone. 44:1177-1185.
Naik, A.A., C. Xie, M.J. Zuscik, P. Kingsley, E.M. Schwarz, H. Awad, R. Guldberg, H. Drissi, J.E. Puzas, B. Boyce, X. Zhang, and R.J. O'Keefe. 2009. Reduced COX-2 Expression in Aged Mice Is Associated With Impaired Fracture Healing. Journal of Bone and Mineral Research. 24:251-264.
Notini, A.J., J.F. McManus, A. Moore, M. Bouxsein, M. Jimenez, W.S.M. Chiu, V. Glatt, B.E. Kream, D.J. Handelsman, H.A. Morris, J.D. Zajac, and R.A. Davey. 2006. Osteoblast Deletion of Exon 3 of the Androgen Receptor Gene Results in Trabecular Bone Loss in Adult Male Mice. Journal of Bone and Mineral Research. 22:347-356.
Nurminsky, D., C. Magee, L. Faverman, and M. Nurminskaya. 2007. Regulation of chondrocyte differentiation by actin-severing protein adseverin. Developmental Biology. 302:427-437.
Oetgen, M., G. Merrell, N. Troiano, M. Horowitz, and M. Kacena. 2008. Development of a femoral non-union model in the mouse. Injury. 39:1119-1126.
Solomon, L.A., N.G. Bérubé, and F. Beier. 2008. Transcriptional regulators of chondrocyte hypertrophy. Birth Defects Research Part C: Embryo Today: Reviews. 84:123-130.
Sfeir, C., Ho, C., Doll, B. A., Azari, K. and Hollinger, J. O. 2005. Fracture Repair. In Bone Regeneration and Repair. J.R.L.a.G.E. Friedlaender., editor. Humana Press Inc., Totowa. 21-43.
Song, B., C.J. Haycraft, H.-s. Seo, B.K. Yoder, and R. Serra. 2007. Development of the post-natal growth plate requires intraflagellar transport proteins. Developmental Biology. 305:202-216.
Street, J. 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proceedings of the National Academy of Sciences. 99:9656-9661.
Strube, P., M. Mehta, A. Baerenwaldt, J. Trippens, C.J. Wilson, A. Ode, C. Perka, G.N. Duda, and G. Kasper. 2009. Sex-specific compromised bone healing in female rats might be associated with a decrease in mesenchymal stem cell quantity. Bone. 45:1065-1072.
Tuck, S.P., A.C. Scane, W.D. Fraser, M.J. Diver, R. Eastell, and R.M. Francis. 2008. Sex steroids and bone turnover markers in men with symptomatic vertebral fractures. Bone. 43:999-1005.
Vandenput, L., J.V. Swinnen, S. Boonen, E. Van Herck, R.G. Erben, R. Bouillon, and D. Vanderschueren. 2004. Role of the Androgen Receptor in Skeletal Homeostasis: The Androgen-Resistant Testicular Feminized Male Mouse Model. Journal of Bone and Mineral Research. 19:1462-1470.
Venken, K., K. De Gendt, S. Boonen, J. Ophoff, R. Bouillon, J.V. Swinnen, G. Verhoeven, and D. Vanderschueren. 2006a. Relative Impact of Androgen and Estrogen Receptor Activation in the Effects of Androgens on Trabecular and Cortical Bone in Growing Male Mice: A Study in the Androgen Receptor Knockout Mouse Model. Journal of Bone and Mineral Research. 21:576-585.
Venken, K., S. Movérare-Skrtic, J.J. Kopchick, K.T. Coschigano, C. Ohlsson, S. Boonen, R. Bouillon, and D. Vanderschueren. 2006b. Impact of Androgens, Growth Hormone, and IGF-I on Bone and Muscle in Male Mice During Puberty. Journal of Bone and Mineral Research. 22:72-82.
Venken, K., F. Schuit, L. Van Lommel, K. Tsukamoto, J.J. Kopchick, K. Coschigano, C. Ohlsson, S. Movérare, S. Boonen, R. Bouillon, and D. Vanderschueren. 2005. Growth Without Growth Hormone Receptor: Estradiol Is a Major Growth Hormone-Independent Regulator of Hepatic IGF-I Synthesis. Journal of Bone and Mineral Research. 20:2138-2149.
Vico, L., and J.M. Vanacker. 2009. Sex hormones and their receptors in bone homeostasis: insights from genetically modified mouse models. Osteoporosis International. 21:365-372.
Wahl, E.C., J. Aronson, L. Liu, J.L. Fowlkes, K.M. Thrailkill, R.C. Bunn, R.A. Skinner, M.J. Miller, G.E. Cockrell, L.M. Clark, Y. Ou, C.M. Isales, T.M. Badger, M.J. Ronis, J. Sims, and C.K. Lumpkin. 2010. Restoration of regenerative osteoblastogenesis in aged mice: Modulation of TNF. Journal of Bone and Mineral Research. 25:114-123.
Weiss, S., G. Zimmermann, R. Baumgart, P. Kasten, M. Bidlingmaier, and P. Henle. 2005. Systemic regulation of angiogenesis and matrix degradation in bone regeneration—Distraction osteogenesis compared to rigid fracture healing. Bone. 37:781-790.
Wiren, K.M. 2004. Targeted Overexpression of Androgen Receptor in Osteoblasts: Unexpected Complex Bone Phenotype in Growing Animals. Endocrinology. 145:3507-3522.
Wyce, A., Y. Bai, S. Nagpal, and C.C. Thompson. 2010. Research Resource: The Androgen Receptor Modulates Expression of Genes with Critical Roles in Muscle Development and Function. Molecular Endocrinology. 24:1665-1674.
Xie, C., X. Ming, Q. Wang, E. Schwarz, R. Guldberg, R. Okeefe, and X. Zhang. 2008. COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone. 43:1075-1083.
Xu, Q., H.-Y. Lin, S.-D. Yeh, I.C. Yu, R.-S. Wang, Y.-T. Chen, C. Zhang, S. Altuwaijri, L.-M. Chen, K.-H. Chuang, H.-S. Chiang, S. Yeh, and C. Chang. 2007. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine. 32:96-106.
Yamaguchi, T., Y. Takada, K. Maruyama, K. Shimoda, Y. Arai, N. Nango, N. Kosaki, H. Takaishi, Y. Toyama, and K. Matsuo. 2009. Fra-1/AP-1 Impairs Inflammatory Responses and Chondrogenesis in Fracture Healing. Journal of Bone and Mineral Research. 24:2056-2065.
Yang, X., B.F. Ricciardi, A. Hernandez-Soria, Y. Shi, N. Pleshko Camacho, and M.P.G. Bostrom. 2007. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 41:928-936.
Yeh, S. 2002. Generation and characterization of androgen receptor knockout (ARKO) mice: An in vivo model for the study of androgen functions in selective tissues. Proceedings of the National Academy of Sciences. 99:13498-13503.
Zhang, Z.M., Z.C. Li, L.S. Jiang, S.D. Jiang, and L.Y. Dai. 2009. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporosis International. 21:1383-1390.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.141.44
論文開放下載的時間是 校外不公開

Your IP address is 18.221.141.44
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code