Responsive image
博碩士論文 etd-0722111-162020 詳細資訊
Title page for etd-0722111-162020
論文名稱
Title
一、霧點萃取法結合電熱式揮發感應耦合電漿質譜儀於水樣中鉻、銅、鎘及鉛分析之應用 二、以鈀奈米粒子為電熱式揮發感應耦合電漿質譜法修飾劑之研究
I. Determination of Cr, Cu, Cd and Pb in Water Samples by ETV-ICP-MS after Cloud Point Extraction II. The Use of Palladium Nanoparticles as an Effective Modifier for ETV-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-07-22
關鍵字
Keywords
霧點萃取法、動態反應管、鈀奈米粒子、鉻、銅、鎘、鉛、砷、鋅、銻、汞、電熱式揮發感應耦合電漿質譜
Pb, As, Zn, Sb, Hg, Cloud point extraction, ETV-ICP-MS, Pd-NPs, Cr, DRC, Cu, Cd
統計
Statistics
本論文已被瀏覽 5643 次,被下載 1654
The thesis/dissertation has been browsed 5643 times, has been downloaded 1654 times.
中文摘要
電熱式揮發感應耦合電漿質譜(Eletrothermal vaporization inductively coupled plasma mass spectrometry,ETV-ICP-MS)是屬於乾進樣裝置,能有降低氧化物及氫氧化物所造成的光譜性干擾,相較於傳統氣動式霧化器而言,具有較高的傳輸效率,因此有較低偵測極限及較佳靈敏度。另外,具有樣品的需求量少(<50 μL)之優點,可避免因樣品本身量少而造成偵測上的限制。再搭配超音波泥漿自動取樣器裝置(Ultrasonic slurry sampling,USS),可直接對固體樣品進行偵測,省去樣品前處理的時間及降低在前處理過程中因導入汙染物或在消化過程中揮發損失等,造成定量上的不準確。
研究分為兩部分,第一部分是利用霧點萃取法結合電熱式揮發感應耦合電漿質譜儀於水樣中鉻、銅、鎘及鉛分析之應用。實驗中利用霧點萃取法(Cloud point extraction,CPE)作為前處理方法,來降低樣品中因含有高鹽類基質所造成的非光譜性干擾;再利用電熱式揮發樣品進樣系統及搭配動態反應管(Dynamic reaction cell,DRC),來降低在分析上面臨的光譜性干擾。霧點萃取法是在水樣中加入疏水性螯合劑與金屬離子生成錯合物,再加入界面活性劑進行萃取,可有效將基質作分離,且具有濃縮等優點。實驗中藉由微波來輔助霧點萃取,以提升萃取效率,縮短萃取時間。實驗結果中霧點萃取法之最適化為在pH值5條件下,添加0.5% m/v APDC和0.5% m/v Triton X-114,於60℃進行微波輔助萃取15分鐘。搭配ETV樣品需求量少的優點,可直接對萃取後的界面活性劑相進行分析,以減少對界面活性劑相稀釋。實驗中也針對影響分析物揮發訊號因素進行探討,包括修飾劑的添加、ETV的裂解溫度及揮發溫度等。
本研究中分析鉻時,因52Cr+嚴重受到40Ar12C+離子的光譜干擾,所以利用動態反應管來減輕干擾,選擇NH3作為反應氣體去除此干擾。最後選擇對標準參考樣品SLEW-3、SLRS-4、飲用水、自來水、澄清湖湖水和愛河河水樣品進行定量分析,並比對同位素稀釋法與基質匹配校正曲線法之定量結果,來驗證此方法的可行性。此方法對鉻、銅、鎘和鉛的偵測極限分別為0.004、0.002、0.001及0.001 μg L-1。
第二部分是以鈀奈米粒子(Palladium nanoparticles,Pd-NPs)作為電熱式揮發感應耦合電漿質譜法修飾劑進行探討,並應用於葉子與穀物樣品中砷、鋅、鎘、銻、汞及鉛之分析。Pd-NPs合成方法是選擇CMC(Carboxymethyl cellulose)作為保護劑及Ascorbic acid作為還原劑,實驗中將對Pd-NPs的尺寸與經升溫程式後於石墨平台(L’vov plateform)的分佈作分析,以及修飾劑的濃度、泥漿樣品的配製、儀器的操作條件與光譜干擾等影響離子強度的變因進行探討,由實驗結果發現,僅使用100 ng Pd-NPs作為修飾劑時即可有效提升分析物的訊號。經分析條件最適化後,選擇對標準參考樣品NIST SRM 1568a、NIST SRM 1573a、榕樹葉及市售米樣品進行分析,來驗證此方法的可行性。並使用標準添加法及同位素稀釋法來定量葉子與穀物樣品中微量元素的濃度,同時比較消化後的葉子與穀\\\物樣品以氣動式霧化器進行定量結果。此方法對於砷、鋅、鎘、銻、汞及鉛元素的方法偵測極限分別為3.8-7.2、0.3-0.7、0.9-1.5、0.1-0.3、0.7-1.5及0.7-1.1 μg kg-1。
Abstract
none
目次 Table of Contents
目錄
論文提要……………………………………………………………………………...….I
謝誌.................................................................................................................................III
目錄…………………………………………………………………………………….IV
圖表目錄………………………………………………………………………………VII


第一章 霧點萃取法結合電熱式揮發感應耦合電漿質譜儀於水樣中鉻、銅、鎘及鉛分析之應用
壹、 前言…………………………………………..…………………………………….1
一、 研究背景………………………………………………….……………….….1
二、 霧點萃取法(Cloud point extraction)簡介………………….…………..……2
三、 微波輔助萃取(Microwave-assisted extraction)簡介………..............………4
四、 電熱式揮發(Electrothermal vaporization)樣品輸入系統簡介…………..…4
五、 動態反應管(Dynamic reaction cell)簡介……………………………….….8
六、 鉻、銅、鎘和鉛之各論……………………………………………………….11
七、 同位素稀釋法(Isotope dilution)…………………………..………………..12
貳、 實驗部分…………………………………………..……………………………...13
一、 儀器裝置及操作條件…………….…………..……………..………………13
二、 試劑藥品及溶液的配製……………….…………………………...….……16
&#21442;、實驗過程……………………………………………………………………...……18
一、 霧點萃取條件之最適化…………………………………………………….18
二、 ETV之最適化…………………………………………………………….…24
三、 DRC系統之最適化………………………………………………….………25
四、 光譜(同質量)干擾………………………………………………………...…27
五、 校正曲線……………………………………………………….……………27
六、 樣品製備與分析…………………………………………………………….28
肆、結果與討論……………………………………………………………...…………28
一、 霧點萃取條件之最適化…………...………………………………………..28
二、 ETV之最適化………………………………..………………………..……38
三、 DRC系統之最適化……………………………...………………………….41
四、 光譜(同質量)干擾………………………………………...………………...47
五、 校正曲線…………………………………………………………...………..47
六、 真實樣品分析…………………………………………………...………..…53
伍、 結論………………………………………………………………………….…….63
陸、參考資料…………………………………………………………………………..64

第二章 以鈀奈米粒子為電熱式揮發感應耦合電漿質譜法修飾劑之研究
壹、 前言………….……………………………………………………………………69
一、 研究背景…………………………………….………………………………69
二、 砷、鋅、鎘、銻、汞及鉛之個論……………………………………….………71
壹、 實驗部分…………………………………………………………….……………72
一、 儀器裝置及操作條件………………………………………….……………72
二、 試劑藥品及溶液的配製…………………………………………………….76
貳、 實驗過程………………………………………………………………………….78
一、 Pd-NPs之探討……………………………………………………………….78
二、 Pd-NPs濃度對分析訊號的影響…………………………….…………....…82
三、 泥漿樣品濃度對分析物訊號的影響………………..………………………84
四、 酸濃度對分析物訊號的影響………..………………………………………84
五、 界面活性劑對分析物訊號的影響……..……………………………………84
六、 裂解溫度及揮發溫度的選擇..………………………………………………85
七、 光譜(同質量)干擾 …………………………………….....…………………85
八、 校正曲線………………………………………………………..……………85
九、 泥漿樣品製備與分析………………………………………………………..87
肆、結果與討論………………………………………………………………………..90
一、 Pd-NPs之探討……………………………..………………...………………90
二、 Pd-NPs濃度對分析訊號的影響………………………………..……...……93
三、 泥漿樣品濃度對分析物訊號的影響……………………..…………………93
四、 酸濃度對分析物訊號的影響……………………………………………..…99
五、 界面活性劑對分析物訊號的影響……………………………………..……99
六、 裂解溫度及揮發溫度的選擇……………………..…………………..…..…99
七、 光譜(同質量)干擾 …………………………………………….…..…..……99
八、 校正曲線……………………………………………………………………105
九、 樣品分析……………………………………………………………………105
伍、結論………………………………………………………………………………115
陸、參考文獻…………………………………………………………………………116
參考文獻 References
第一章 霧點萃取法結合電熱式揮發感應耦合電漿質譜儀於水樣中鉻、銅、鎘及鉛分析之應用
1. 環保法規 "飲用水水質標準" 民國九十八年十一月.

2. Amorim, F. A. C.; Ferreira, S. L. C., Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry. Talanta 2005, 65 (4), 960-964.

3. Praveen, R. S.; Daniel, S.; Rao, T. P., Solid phase extraction preconcentration of cobalt and nickel with 5,7-dichloroquinone-8-ol embedded styrene-ethylene glycol dimethacrylate polymer particles and determination by fame atomic absorption spectrometry (FAAS). Talanta 2005, 66 (2), 513-520.

4. Citak, D.; Tuzen, M., A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food Chem. Toxicol. 2010, 48 (5), 1399-1404.

5. Paleologos, E. K.; Stalikas, C. D.; Tzouwara-Karayanni, S. M.; Pilidis, G. A.; Karayannis, M. I., Micelle-mediated methodology for speciation of chromium by flame atomic absorption spectrometry. J. Anal. Atom. Spectrom. 2000, 15 (3), 287-291.

6. Paleologos, E. K.; Stalikas, C. D.; Karayannis, M. I., An optimised single-reagent method for the speciation of chromium by flame atomic absorption spectrometry based on surfactant micelle-mediated methodology. Analyst 2001, 126 (3), 389-393.

7. Chen, B. B.; Hu, B.; He, M., Cloud point extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples. Rapid. Commun. Mass Sp. 2006, 20 (19), 2894-2900.

8. Li, Y. J.; Hu, B.; He, M.; Xiang, G. Q., Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction. Water Res. 2008, 42 (4-5), 1195-1203.

9. Baig, J. A.; Kazi, T. G.; Shah, A. Q.; Arain, M. B.; Afridi, H. I.; Kandhro, G. A.; Khan, S., Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique. Anal. Chim. Acta 2009, 651 (1), 57-63.

10. Borkowska-Burnecka, J.; Szymczycha-Madeja, A.; Zyrnicki, W., Determination of toxic and other trace elements in calcium-rich materials using cloud point extraction and inductively coupled plasma emission spectrometry. J. Hazard. Mater. 2010, 182 (1-3), 477-483.

11. Watanabe, H.; Tanaka, H., Nonionic Surfactant as a New Solvent for Liquid-Liquid - Extraction of Zinc(Ii) with 1-(2-Pyridylazo)-2-Naphthol. Talanta 1978, 25 (10), 585-589.

12. Bezerra, M. D.; Arruda, M. A. Z.; Ferreira, S. L. C., Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review. Appl. Spectrosc. Rev. 2005, 40 (4), 269-299.

13. Rangel-Yagui, C. O.; Pessoa, A.; Blankschtein, D., Two-phase aqueous micellar systems - An alternative method for protein purification. Braz. J. Chem. Eng. 2004, 21 (4), 531-544.

14. Paleologos, E. K.; Giokas, D. L.; Karayannis, M. I., Micelle-mediated separation and cloud-point extraction. Trac-Trend. Anal. Chem. 2005, 24 (5), 426-436.

15. Niemela, M.; Huttunen, S. M.; Gornostayev, S. S.; Peramaki, P., Determination of Pt from coke samples by ICP-MS after microwave assisted digestion and microwave assisted cloud point extraction. Microchim. Acta 2009, 166 (3-4), 255-260.

16. Akinlua, A.; Jochmann, M. A.; Laaks, J.; Ewert, A.; Schmidt, T. C., Microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock. Anal. Chim. Acta 2011, 691 (1-2), 48-55.

17. Meeravali, N. N.; Jiang, S. J., Microwave assisted mixed-micelle cloud point extraction of Au and Tl from environmental samples without using a chelating agent prior to ICP-MS determination. J. Anal. Atom. Spectrom. 2008, 23 (10), 1365-1371.

18. Simitchiev, K.; Stefanova, V.; Kmetov, V.; Andreev, G.; Kovachev, N.; Canals, A., Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. J. Anal. Atom. Spectrom. 2008, 23 (5), 717-726.

19. Sun, C.; Xie, Y. C.; Tian, Q. L.; Liu, H. Z., Analysis of glycyrrhizic acid and liquiritin in liquorice root with microwave-assisted micellar extraction and pre-concentration. Phytochem Analysis 2008, 19 (2), 160-163.

20. Madej, K., Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. Trac-Trend. Anal. Chem. 2009, 28 (4), 436-446.

21. Aramendia, M.; Resano, M.; Vanhaecke, F., Electrothermal vaporization-inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples A critical review. Anal. Chim. Acta 2009, 648 (1), 23-44.

22. Aramendia, M.; Resano, M.; Vanhaecke, F., Determination of toxic trace impurities in titanium dioxide by solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 2009, 24 (1), 41-50.

23. Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H. M., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis. Spectrochim. Acta B 2000, 55 (2), 185-196.

24. He, M.; Hu, B.; Jiang, Z. C., Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluroethylene emulsion as a chemical modifier. Anal. Chim. Acta 2005, 530 (1), 105-112.

25. Huang, S. Y.; Jiang, S. J., 8-Hydroxyquinoline-5-sulfonic acid as the modifier for the determination of trace elements in cereals by slurry sampling electrothermal vaporization ICP-MS. Anal. Methods-Uk. 2010, 2 (9), 1310-1315.

26. Resano, M.; Aramendia, M.; Vanhaecke, F., Extending the capabilities of electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICPMS): Coupling the graphite furnace to a sector field instrument. J. Anal. Atom. Spectrom. 2009, 24 (4), 484-493.

27. Chang, Y. L.; Jiang, S. J., Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 2001, 16 (12), 1434-1438.

28. Wu, M. C.; Jiang, S. J.; Hsi, T. S., Determination of the ratio of calcium to phosphorus in foodstuffs by dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2003, 377 (1), 154-158.

29. Sloth, J. J.; Larsen, E. H., The application of inductively coupled plasma dynamic reaction cell mass spectrometry for measurement of selenium isotopes, isotope ratios and chromatographic detection of selenoamino acids. J. Anal. Atom. Spectrom. 2000, 15 (6), 669-672.

30. Simpson, L. A.; Thomsen, M.; Alloway, B. J.; Parker, A., A dynamic reaction cell (DRC) solution to oxide-based interferences in inductively coupled plasma mass spectrometry (ICP-MS) analysis of the noble metals. J Anal Atom Spectrom 2001, 16 (12), 1375-1380.
31. Tanner, S. D.; VI, B.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta B 2002, 57 (9), 1361-1452.

32. Division of Toxicology, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. 2007 CERCLA Priority List of Hazardous Substances. [http://www.atsdr.cdc.gov/cercla/07list.html].

33. Baruthio, F., Toxic Effects of Chromium and Its Compounds. Biol. Trace Elem. Res. 1992, 32, 145-153.

34. 張美華、施如佳、邱雅琦、陳怡如、 陳石松、 許正忠、鄭秋真、 陳泰華、 林阿洋、周薰修, "九十一年度食米中重金屬(鎘、汞、鉛)含量之調查", 藥物食品檢驗局調查研究年報. 21: 236-249 2003

35. Smith, R. G., Determination of Mercury in Environmental-Samples by Isotope Dilution/Icpms. Anal. Chem. 1993, 65 (18), 2485-2488.

36. Gine, M. F.; Packer, A. P., Online Isotope Dilution and Inductively Coupled Plasma Mass Spectrometry: from Elemental to Species Quantification. J. Brazil. Chem. Soc. 2010, 21 (4), 575-589.

37. Lee, J. M.; Boyle, E. A.; Echegoyen-Sanz, Y.; Fitzsimmons, J. N.; Zhang, R. F.; Kayser, R. A., Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2011, 686 (1-2), 93-101.

38. Heumann, K. G., Isotope-dilution ICP-MS for trace element determination and speciation: from a reference method to a routine method? Anal. Bioanal. Chem. 2004, 378 (2), 318-329.

39. Tan, S. H.; Horlick, G., Background Spectral Features in Inductively Coupled Plasma Mass-Spectrometry. Appl. Spectrosc. 1986, 40 (4), 445-460.

40. Rahn, A. K. K.; Yaylayan, V. A., Monitoring cyclic acyloxonium ion formation in palmitin systems using infrared spectroscopy and isotope labelling technique. Eur J. Lipid. Sci. Tech. 2011, 113 (3), 330-334.

41. Gregoire, D. C., Sample Introduction Techniques for the Determination of Osmium Isotope Ratios by Inductively Coupled Plasma Mass-Spectrometry. Anal. Chem. 1990, 62 (2), 141-146.

42. Godet, A.; Follmi, K. B.; Stille, P.; Bodin, S.; Matera, V.; Adatte, T., Reconciling strontium-isotope and K-Ar ages with biostratigraphy: the case of the Urgonian platform, Early Cretaceous of the Jura Mountains, Western Switzerland. Swiss. J. Geosci. 2011, 104 (1), 147-160.

43. Chen, S. F.; Jiang, S. J., Determination of cadmium, mercury and lead in soil samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom.1998, 13 (10), 1113-1117.

44. Liang, P.; Li, J.; Yang, X., Cloud point extraction preconcentration of trace cadmium as 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone complex and determination by flame atomic absorption spectrometry. Microchim. Acta. 2005, 152 (1-2), 47-51.

45. Ojeda, C. B.; Rojas, F. S., Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal. Bioanal. Chem. 2009, 394 (3), 759-782.

46. Lee, S. K.; Choi, H. S., Spectrophotometric determination of cadmium and copper with ammonium pyrrolidinedithiocarbamate in nonionic Tween 80 micellar media. B. Kor. Chem. Soc. 2001, 22 (5), 463-466.

47. Chen, J. R.; Teo, K. C., Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal. Chim. Acta 2001, 450 (1-2), 215-222.

48. Manzoori, J. L.; Bavili-Tabrizi, A., The application of cloud point preconcentration for the determination of Cu in real samples by flame atomic absorption spectrometry. Microchem. J. 2002, 72 (1), 1-7.

49. Borges, D. L. G.; da Veiga, M. A. M. S.; Frescura, V. L. A.; Welz, B.; Curtius, A. J., Cloud-point extraction for the determination of Cd, Pb and Pd in blood by electrothermal atomic absorption spectrometry, using Ir or Ru as permanent modifiers. J. Anal. Atom. Spectrom. 2003, 18 (5), 501-507.

50. Li, J.; Liang, P.; Shi, T. Q.; Lu, H. B., Cloud point extraction preconcentration and ICP-OES determination of trace chromium and copper in water samples. Atom. Spectrosc. 2003, 24 (5), 169-172.

51. da Silva, M. A. M.; Frescura, V. L. A.; Curtius, A. J., Determination of trace elements in water samples by ultrasonic nebulization inductively coupled plasma mass spectrometry after cloud point extraction. Spectrochim. Acta B 2000, 55 (7), 803-813.

52. Ferreira, S. L. C.; Coelho, L. M.; Bezerra, M. A.; Arruda, M. A. Z.; Bruns, R. E., Determination of Cd, Cu, and Pb after cloud point extraction using multielemental sequential determination by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Separ. Sci. Technol. 2008, 43 (4), 815-827.

53. Shemirani, F.; Abkenar, S. D.; Jamali, M. R., Determination of cadmium(II), copper(II) and zinc(II) in water samples by flame atomic absorption spectrometry after cloud point extraction. Indian. J. Chem. A 2005, 44 (6), 1211-1214.

54. Jones, B. T.; Donati, G. L.; Pharr, K. E.; Calloway, C. P.; Nobrega, J. A., Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry. Talanta 2008, 76 (5), 1252-1255.

55. Chen, J. R.; Xiao, S. M.; Wu, X. H.; Fang, K. M.; Liu, W. H., Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta 2005, 67 (5), 992-996.

56. Nan, J.; Jiang, Y.; Yan, X. P., A flow injection online micelle-mediated preconcentration and separation procedure without phase separation coupled with electrothermal atomic absorption spectrometry for determination of trace lead in biological samples. J. Anal. Atom. Spectrom. 2003, 18 (8), 946-950.

57. 辜于誠, "微波輔助霧點萃取法結合動態反應管感應耦合電漿質譜儀於水樣中微量鉻、銅、鎘及鉛分析之應用", 中山大學碩士論文,民國99年1月.

58. Nilsson, P. G.; Wennerstrom, H.; Lindman, B., Structure of Micellar Solutions of Non-Ionic Surfactants - Nuclear Magnetic-Resonance Self-Diffusion and Proton Relaxation Studies of Poly(Ethylene Oxide) Alkyl Ethers. J. Phys. Chem-Us. 1983, 87 (8), 1377-1385.

59. Andrle, C. M.; Jakubowski, N.; Broekaert, J. A. C., Speciation of chromium using reversed phase-high performance liquid chromatography coupled to different spectrometric detection methods. Spectrochim. Acta B 1997, 52 (2), 189-200.
第二章 以鈀奈米粒子為電熱式揮發感應耦合電漿質譜法修飾劑之研究
1. Saunders, A. E.; Sigman, M. B.; Korgel, B. A., Growth kinetics and metastability of monodisperse tetraoctylammonium bromide capped gold nanocrystals. J. Phys. Chem. B 2004, 108 (1), 193-199.

2. Bhat, A. R.; Wu, H. F., Synthesis, characterization and application of modified Pd nanoparticles as preconcentration probes for selective enrichment/analysis of proteins via hydrophobic interactions from real-world samples using nanoparticleliquid-liquid microextraction coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 3547-3552.

3. Choi, J. W.; Oh, B. K.; Kim, Y. K.; Min, J. H., Nanotechnology in biodevices. J. Microbiol. Biotechn. 2007, 17 (1), 5-14.

4. Swierczewska, M.; Lee, S.; Chen, X. Y., Inorganic Nanoparticles for Multimodal Molecular Imaging. Mol. Imaging. 2011, 10 (1), 3-16.

5. Hasobe, T.; Imahori, H.; Kamat, P. V.; Ahn, T. K.; Kim, S. K.; Kim, D.; Fujimoto, A.; Hirakawa, T.; Fukuzumi, S., Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 2005, 127 (4), 1216-1228.

6. Wang, S. X.; Li, G., Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. Ieee T. Magn. 2008, 44 (7), 1687-1702.

7. Gunduz, S.; Akman, S.; Baysal, A.; Kahraman, M., The use of silver nanoparticles as an effective modifier for the determination of arsenic and antimony by electrothermal atomic absorption spectrometry. Spectrochim. Acta. B 2010, 65 (4), 297-300.

8. Akman, S.; Gunduz, S.; Baysal, A.; Culha, M., The use of gold nanoparticles as an effective modifier for the determination of arsenic and antimony by electrothermal atomic absorption spectrometry. Microchim. Acta 2011, 172 (3-4), 403-407.

9. Aramendia, M.; Resano, M.; Vanhaecke, F., Electrothermal vaporization-inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples A critical review. Anal. Chim. Acta 2009, 648 (1), 23-44.

10. Volynsky, A. B., Mechanisms of action of platinum group modifiers in electrothermal atomic absorption spectrometry. Spectrochim. Acta B 2000, 55 (2), 103-150.

11. Volynsky, A. B., Comparative efficacy of platinum group metal modifiers in electrothermal atomic absorption spectrometry. Spectrochim. Acta B 2004, 59 (12), 1799-1821.

12. Shiue, M. Y.; Mierzwa, J.; Yang, M. H., Mechanism of the action of palladium and palladium- magnesium nitrate modifiers used in the determination of tellurium by electrothermal atomic absorption spectrometry. J. Anal. Atom. Spectrom. 2001, 16 (10), 1172-1179.
13. Tseng, Y. J.; Liu, C. C.; Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma Mass spectrometry for the determination of As and Se in soil and sludge. Anal. Chim. Acta 2007, 588 (2), 173-178.

14. Volynsky, A. B.; de Loos-Vollebregt, M. T. C., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectrochim. Acta B 2005, 60 (11), 1432-1441.

15. Volynsky, A. B.; Krivan, V., Colloidal palladium - a promising chemical modifier for electrothermal atomic absorption spectrometry. Spectrochim. Acta B 1997, 52 (9-10), 1293-1304.

16. Volynsky, A. B.; Akman, S.; Dogan, C. E.; Koklu, U., Application of colloidal palladium modifier for the determination of As, Sb and Pb in a spiked sea water sample by electrothermal atomic absorption spectrometry. Spectrochim. Acta B 2001, 56 (12), 2361-2369.

17. Division of Toxicology, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. 2007 CERCLA Priority List of Hazardous Substances. [http://www.atsdr.cdc.gov/cercla/07list.html].

18. Van Hulle, M.; Zhang, C.; Schotte, B.; Mees, L.; Vanhaecke, F.; Vanholder, R.; Zhang, X. R.; Cornelis, R., Identification of some arsenic species in human urine and blood after ingestion of Chinese seaweed Laminaria. J. Anal. Atom. Spectrom. 2004, 19 (1), 58-64.

19. Brown, K. G.; Ross, G. L., Arsenic, drinking water, and health: A position paper of the American Council on Science and Health. Regul. Toxicol. Pharm. 2002, 36 (2), 162-174.

20. Polak, M.; Opoka, R.; Cartwright, I. L., Response of fluctuating asymmetry to arsenic toxicity: support for the developmental selection hypothesis. Environ. Pollut. 2002, 118 (1), 19-28.

21. Caldelas, C.; Dong, S. F.; Araus, J. L.; Weiss, D. J., Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc. J. Exp. Bot. 2011, 62 (6), 2169-2178.

22. 張美華、施如佳、邱雅琦、陳怡如、 陳石松、 許正忠、鄭秋真、 陳泰華、 林阿洋、周薰修, "九十一年度食米中重金屬(鎘、汞、鉛)含量之調查", 藥物食品檢驗局調查研究年報. 21: 236-249 2003

23. Madrakian, T.; Bozorgzadeh, E., Spectrophotometric determination of Sb(III) and Sb(V) in biological samples after micelle-mediated extraction. J. Hazard. Mater 2009, 170 (2-3), 809-813.

24. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold nanorods: Electrochemical synthesis and optical properties. J .Phys. Chem. B 1997, 101 (34), 6661-6664.

25. Hoefelmeyer, J. D.; Niesz, K.; Somorjai, G. A.; Tilley, T. D., Radial anisotropic growth of rhodium nanoparticles. Nano Lett. 2005, 5 (3), 435-438.

26. Walter, E. C.; Murray, B. J.; Favier, F.; Kaltenpoth, G.; Grunze, M.; Penner, R. M., Noble and coinage metal nanowires by electrochemical step edge decoration. J. Phys. Chem. B 2002, 106 (44), 11407-11411.

27. Liu, J. C.; Qin, G. W.; Raveendran, P.; Kushima, Y., Facile "green" synthesis, characterization, and catalytic function of beta-D-glucose-stabilized Au nanocrystals. Chem-Eur. J. 2006, 12 (8), 2132-2138.

28. Teranishi, T.; Miyake, M., Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 1998, 10 (2), 594-600.

29. Sun, Y.; Zhang, L. H.; Zhou, H. W.; Zhu, Y. M.; Sutter, E.; Ji, Y.; Rafailovich, M. H.; Sokolov, J. C., Seedless and templateless synthesis of rectangular palladium nanoparticles. Chem. Mater. 2007, 19 (8), 2065-2070.

30. Wei, X. Y.; Qi, L.; Tan, J. J.; Liu, R. G.; Wang, F. Y., A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal. Chim. Acta 2010, 671 (1-2), 80-84.

31. Nadagouda, M. N.; Varma, R. S., Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 2007, 8 (9), 2762-2767.

32. Vimala, K.; Sivudu, K. S.; Mohan, Y. M.; Sreedhar, B.; Raju, K. M., Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: A rational methodology for antibacterial application. Carbohyd. Polym. 2009, 75 (3), 463-471.

33. Luna-Martinez, J. F.; Hernandez-Uresti, D. B.; Reyes-Melo, M. E.; Guerrero-Salazar, C. A.; Gonzalez-Gonzalez, V. A.; Sepulveda-Guzman, S., Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohyd. Polym. 2011, 84 (1), 566-570.

34. Zhao, D. Y.; He, F.; Liu, J. C.; Roberts, C. B., One-Step "Green" Synthesis of Pd Nanoparticles of Controlled Size and Their Catalytic Activity for Trichloroethene Hydrodechlorination. Ind. Eng. Chem. Res.2009, 48 (14), 6550-6557.

35. 張仕正 "在二氧化鈦上進行Salicylic acid 可見光光催化反應的研究" 中央大學碩士論文, 民國92年7月.

36. He, M.; Hu, B.; Jiang, Z. C., Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluroethylene emulsion as a chemical modifier. Anal. Chim .Acta 2005, 530 (1), 105-112.

37. Resano, M.; Garcia-Ruiz, E.; Moens, L.; Vanhaecke, F., Solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry for the direct determination of traces of iodine. J. Anal. Atom. Spectrom. 2005, 20 (2), 81-87.

38. Sahayam, A. C.; Chaurasia, S. C.; Venkateswarlu, G., Dry ashing of organic rich matrices with palladium for the determination of arsenic using inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 2010, 661 (1), 17-19.

39. Rodriguez, P. F.; Marchante-Gayon, J. M.; Sanz-Medel, A., Elemental analysis of silicon based minerals by ultrasonic slurry sampling electrothermal vaporisation ICP-MS. Talanta 2006, 68 (3), 869-875.

40. Galbacs, G.; Vanhaecke, F.; Moens, L.; Dams, R., Determination of cadmium in certified reference materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry supplemented with thermogravimetric studies. Microchem. J. 1996, 54 (3), 272-286.

41. Vanhaecke, F.; Resano, M.; Pruneda-Lopez, M.; Moens, L., Determination of platinum and rhodium in environmental matrixes by solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry. Anal. Chem. 2002, 74 (23), 6040-6048.

42. Miller-Ihli, N. J.; Baker, S. A., Microhomogeneity assessments using ultrasonic slurry sampling coupled with electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2001, 56 (9), 1673-1686.

43. Huang, S. Y.; Jiang, S. J., 8-Hydroxyquinoline-5-sulfonic acid as the modifier for the determination of trace elements in cereals by slurry sampling electrothermal vaporization ICP-MS. Anal. Methods-Uk.2010, 2 (9), 1310-1315.

44. Ho, C. Y.; Jiang, S. J., Electrothermal vaporization inductively coupled plasma mass spectrometry for determination of vanadium and chromium in soils. Spectrochim. Acta. B 2003, 58 (1), 63-70.

45. Li, P. C.; Jiang, S. J., Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of Cr, Cu, Cd, Hg and Pb in rice flour. Anal.Chim .Acta 2003, 495 (1-2), 143-150.

46. 何巧瑜 "泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於奶粉及土壤樣品中微量元素分析之應用" 中山大學碩士論文, 民國91年6月.

47. 環保法規 "飲用水水質標準" 民國九十八年十一月.

48. Chen, S. F.; Jiang, S. J., Determination of cadmium, mercury and lead in soil samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 1998, 13 (10), 1113-1117.

49. Jiang, S. J.; Hsiao, P. K.; Sahayam, A. C., Determination of trace elements in silicon powder using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 2011, 26 (3), 586-592.
50. Jiang, S. J.; Tseng, Y. J.; Liu, C. C., Slurry sampling electrothermal vaporization inductively coupled plasma Mass spectrometry for the determination of As and Se in soil and sludge. Anal. Chim. Acta 2007, 588 (2), 173-178.

51. Lu, H. H.; Jiang, S. J., Organic acids as the modifier to determine Zn, Cd, Tl and Pb in soil by slurry sampling electrothermal vaporization inductively-coupled plasma mass spectrometry. Anal Chim Acta 2001, 429 (2), 247-255.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code