Responsive image
博碩士論文 etd-0722111-165907 詳細資訊
Title page for etd-0722111-165907
論文名稱
Title
自旋不穩態銅鍗氧溴的磁介電研究
The study od magnetodielectric behaviors in frustrated Cu2Te2O5Br2 compound
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-24
繳交日期
Date of Submission
2011-07-22
關鍵字
Keywords
磁交互作用力、反鐵磁性、銅鍗氧溴(2252)、自旋不穩態系統、磁介電效應
magnetodielectric behavior, spin frustrated system, Cu2Te2O5Br2, magnetic exchange interactions, antiferromagnetic behavior
統計
Statistics
本論文已被瀏覽 5697 次,被下載 1046
The thesis/dissertation has been browsed 5697 times, has been downloaded 1046 times.
中文摘要
三角(四面)型的自旋不穩態和低維度系統常被認為具有磁介電效應的特性,因此具有四面自旋不穩態和低維度系統的銅鍗氧溴(2252)樣品也被猜測極有可能具有磁介電的特性。此銅鍗氧溴樣品的結構是由四個銅離子在一平面座標形成四角形群集的結構。在結構中由四個銅離子團構成的四面體之間在a-b平面上具有較弱的作用力,因此這樣品是一個研究在四面型自旋不穩態的交互作用、伴隨低能量激發和四面體間的集體磁誘發的理想材料。在銅鍗氧溴樣品中發現了在To ~ 11.5 K的反鐵磁磁躍遷和在Tm ~ 30 K的磁交互作用力。並且在施加最高磁場為90 kOe、頻率變化從1 kHz至2 MHz的變場介電係數量測中發現低溫區間裡11.5 K及40 K 的峰值皆隨著磁場而增加,所以我們猜測磁介電耦合的提升和四面型不穩態群集裡的交互作用力及Te4+的孤對電子所產生的群集間交互作用力有關。
Abstract
An intriguing magnetodielectric behavior is observed in triangular or tetrahedral frustrated and low-dimensional system. Therefore, the spin-tetrahedral and low-dimensional compound copper-tellurides (Cu2Te2O5Br2) is suggested that has magnetodielectric behavior. Tetragonal Cu2Te2O5Br2 contains clusters of four Cu2+ (S = 1/2) in a planar coordination. These tetrahedral form weakly coupled sheets within the crystallographic a-b plane. Therefore, this system is ideal to study the interplay between the spin frustration on a tetrahedron with localized low-energy excitations and collective magnetism induced by inter-tetrahedral couplings. In this material a strongly reduced magnetic transition temperature To = 11.5 K in comparison with a dominant magnetic exchange of 30 K is found. Low-dimensional systems with triangular geometries are considered as prominent candidates for applications using novel magnetoelectric materials. At the highest applied magnetic field 90 kOe, the temperature dependent dielectric behavior with almost frequency independent well defined maxima at Tm ~ 30 K and To ~ 11.5 K are enhanced compared with that at zero field. We suggest that the observed magnetodielectric coupling can arise from exchange striction involving frustrated tetramer clusters and inter-cluster exchange bridges with polarizable lone-pair electrons on Te4+ ions.
目次 Table of Contents
Content……………………………………………………………………………………4
List of Figure…………………………………………….......................................……...6
Chapter 1 Introduction
1.1 General introduction…………………………………………………………….9
1.2 Spin frustrated system…………………………………………..……………11
1.3 Magnetoelectric effects and multiferroicity……………………………………14
1.4 Cu2Te2O5Br2 system……………………..………………………..….………....15
1.4.1 Structural details..…..…………………………………………………..16
1.4.2 Magnetic measurement………………………………………..………..17
1.4.3 Specific heat measurement……………………………………………...18
1.4.4 Neutron Diffraction studies………………………….………………….20
1.5 Motivation……………………………………………………………………...20

Chapter 2 Experimental instrumentations and techniques
2.1 Magnetic properties measurement system...........……………………………...22
2.1.1 Instrumentations………………………… ………………….….22
2.1.1.1 Temperature control…...………………………………………....24
2.1.1.2 Magnet…………………………………………………………...26
2.1.2 Signal detection………………………………….……………….30
2.1.2.1 Superconducting Quantum Interference Divice (SQUID)……….30
2.1.2.2 Transverse system in MPMS…………………………………….31
2.1.3 Reciprocating sample option (RSO)……………………………………33
2.1.4 Field cooled (FC) and Zero field cooled (ZFC) measurements………...36
2.2 Electric measurements…………………………………………………………37
2.2.1 Principle………………………………………………………………...37
2.2.2 Dielectric measurements in magnetic field……………………………..42
2.2.3 Electric polarization…………………………………………………….45
Chapter 3 Results and discussion
3.1 Magnetic properties…………………………………………………………….46
3.2 Dielectric properties……………………………………………………………51
3.2.1 Frequency and temperature dielectric behavior and Polarization.……...51
3.2.2 Magnetodielectric effect……….………………………………………..56
Chapter 4 Conclusion………………………………………………………………….58

References …………………………………………………………………………….59
參考文獻 References
1. K. Binder and A. P. Young, 'Spin glasses: Experimental facts, theoretical concepts, and open questions', Rev. Mod. Phys. 58, 801 (1986).
2. H. T. Diep, 'Magnetic systems with competing interactions', (World Scientific, Singapore) (1994).
3. F. Mila, 'Quantum spin liquids', Eur. J. Phys. 21, 499 (2000).
4. P. Lemmens, G. Guntherodt, and C. Gros, 'Magnetic light scattering in low-dimensional quantum spin systems', Phys. Rep. 375, 1 (2003).
5. S. Miyahara and K. Ueda, 'Theory of the orthogonal dimer Heisenberg spin model for SrCu2 (BO3)2', J. Phys.: Condens. Matter 15, 327 (2003).
6. M. Mambrini, J. Trebosc, and F. Mila, 'The spin gap of CaV4O9 revisited. ', Phys. Rev. B 59, 13806 (1999).
7. W. Eerenstein, N. D. Mathur and J. F. Scott, 'Multiferroic and magnetoelectric materials', Nature 442, 759 (2006).
8. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, 'Magnetic control of ferroelectric polarization', Nature (London) 426, 55 (2003).
9. S. W. Cheong and M. Mostovoy, 'Multiferroics: a magnetic twist for ferroelectricity', Nature Mater. 6, 13 (2007).
10. M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, 'Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3', Phys. Rev. Lett. 95, 087206 (2005).

11. G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, and A. P. Ramirez, 'Magnetically driven ferroelectric order in Ni3V2O8', Phys. Rev. Lett. 95, 087205 (2005).
12. A. B. Harris, T. Yildirim, A. Aharony, and O. Entin-Wohlman, 'Towards a microscopic model of magnetoelectric interactions in Ni3V2O8', Phys. Rev. B 73, 184433 (2006).
13. L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G. Radaelli, and S. W. Cheong., 'Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5', Phys. Rev. Lett. 93, 177402 (2004).
14. N. Aliouane, D. N. Argyriou, J. Strempfer, I. Zegkinoglou, S. Landsgesell, and M. V. Zimmermann, 'Field-induced linear magnetoelastic coupling in multiferroic TbMnO3', Phys. Rev. B 73, 020102 (2006).
15. I. A. Sergienko, C. Şen, and E. Dagotto, 'Ferroelectricity in the magnetic E-Phase of orthorhombic perovskites', Phys. Rev. Lett. 97, 227204 (2006).
16. I. A. Sergienko and E. Dagotto, 'Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites', Phys. Rev. B 73, 094434 (2006).
17. H. Katsura, N. Nagaosa, and A. V. Balatsky, 'Spin current and magnetoelectric effect in noncollinear magnets', Phys. Rev. Lett. 95, 057205 (2005).
18. G. H. Wannier, 'Antiferromagnetism. The triangular Ising Net', Phys. Rev. 79, 357 (1950).
19. A. Yoshimori, 'A new type of antiferromagnetic structure in the rutile type crystal', J. Phys. Soc. Jpn. 14, 807 (1959).
20. J. Villain, 'La structure des substances magnetiques', J. Phys. Chem. Solids 11, 303 (1959).
21. T. A. Kaplan, 'Classical theory of spin configurations in the cubic spinel', Phys. Rev. 119, 1460 (1960).
22. H. T. Diep, 'Frustrated spin systems', (World Scientific Publishing Co. Pvt. Ltd.) (2004).
23. I. Terasaki, Y. Sasago, and K. Uchinokura, 'Large thermoelectric power in NaCo2O4 single crystals', Phys. Rev. B 56, R12685 (1997).
24. S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu and Y. Maeno, 'Spin disorder on a triangular lattice', Science 309, 9 (2005).
25. S. G. Condran and M. L. Plumer, 'A model of magnetic order in hexagonal HoMnO3', J. Phys.: Condens. Matter. 22, 162201 (2010).
26. T. M. McQueen, D. V. West, B. Muegge, Q. Huang, K. Noble, H. W. Zandbergen and R. J. Cava, 'Frustrated ferroelectricity in niobate pyrochlores', J. Phys.: Condens. Matter. 20, 235210 (2008).
27. S. T. Bramwell and M. J. P. Gingras, 'Spin Ice state in frustrated magnetic pyrochlore material's', Science 294, 1495 (2001).
28. M. Pregelj, O. Zaharko, A. Zorko, Z. Kutnjak, P. Jeglič, P. J. Brown, M. Jagodič, Z. Jagličić, H. Berger, and D. Arčon, 'Spin amplitude modulation driven magnetoelectric coupling in the new multiferroic FeTe2O5Br', Phys. Rev. Lett. 103, 147202 (2009).

29. D. P. Belanger, 'Experimental characterization of the Ising model in disordered antiferromagnets. ', Braz. J. Phys. 30, no.4 Sao Paulo (2000).
30. D. Grohol, K. Matan, J. H. Cho, S. H. Lee, J. W. Lynn, D. G. Nocera and Y. S. Lee, 'Spin chirality on a two-dimensional frustrated lattice', Nature Mater. 4, 323 (2005).
31. Z. Wang and P. Zhan, 'Quantum spin Hall effect and spin-charge separation in a Kagome lattice', New J. Phys. 12, 043055 (2010).
32. B. P. Uberuaga, D. Bacorisen, R. Smith, J. A. Ball, R. W. Grimes, A. F. Voter, and K. E. Sickafus, 'Defect kinetics in spinels: Long-time simulations of MgAl2O4, MgGa2O4, and MgIn2O4', Phys. Rev. B 75, 104116 (2007).
33. M. Fiebig, 'The revival of the magneto-electric effect', J. Phys. D 38, 123 (2005).
34. N. A. Hill, 'Why are there so few magnetic ferroelectrics? ', J. Phys. Chem. B 104, 6694 (2000).
35. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, 'The origin of ferroelectricity in magnetoelectric YMnO3', Nature Mater. 3, 164 (2004).
36. G. Nenert, Y. Ren, H. T. Stokes, and T. T. M. Palstra, 'Symmetry changes at the ferroelectric transition in the multiferroic YMnO3', arXiv: cond-mat/0504546
37. C. J. Fennie and K. M. Rabe, 'Ferroelectric transition in YMnO3 from first principles', Phys. Rev. B 72, 100103 (2005).
38. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, 'Magnetic control of ferroelectric polarization', Nature (London) 426, 55 (2003).
39. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, 'Electric polarization reversal and memory in a multiferroic material induced by magnetic fields', Nature 429, 392 (2004).
40. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, 'Epitaxial BiFeO3 multiferroic thin film heterostructures', Science 299, 1719 (2003).
41. A. Moreira dos Santos, S. Parashar, A. R. Raju, A. K. Cheetham, and C. N. R. Rao, 'Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite', Solid State Commun. 122, 49 (2002).
42. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, 'Three-dimensional heteroepitaxy in self-assembled BaTiO3-CoFe2O4 nanostructures', Science 303, 661 (2004).
43. M. P. Singh, W. Prellier, C. Simon, and B. Raveau, 'Magnetocapacitance effect in perovskite-superlattice based multiferroics', Appl. Phys. Lett. 87, 22505 (2005).
44. U. Schollwock, J. Richter, D. J. J. Farnell, R. F. Bishop, 'Quantum magnetism, Lect. Notes Phys. ', 645, (Springer-Verlag, Berlin) (2004).
45. F. Mila, 'Quantum spin liquids', Eur. J. Phys. 21, 499 (2000).
46. A. P. Ramirez, 'Geometrical frustration, in handbook of magnetic materials', 13, (Elsevier Science) (2001).
47. P. Lemmens, K. Y. Choi, E. E. Kaul, C. Geibel, K. Becker, W. Brenig, R. Valenti, C. Gros, M. Johnsson, P. Millet, and F. Mila, 'Evidence for an unconventional magnetic instability in the spin-tetrahedra system Cu2Te2O5Br2', Phys. Rev. Lett. 87, 227201 (2001).

48. A. Smontara, A. Bilusić, Z. Jagličić, A. Zorko, J. Dolinšek and H. Berger, 'Anomalous thermal conductivity of single crystal Cu2Te2O5Cl2', Appl. Magn. Reson. 29, 261 (2005)
49. M. Johnsson, K. W. T. Ornroos, F. Mila, and P. Millet, 'Tetrahedral clusters of Copper(II): Crystal structures and magnetic properties of Cu2Te2O5X2 (X = Cl, Br) ', Chem. Matter. 12, 2853 (2000).
50. O. Zaharko, A. D. Aladine, S. Streule, J. Mesot, P. J. Brown, and H. Berger, 'Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl,Br) Studied by Neutron Diffraction', Phys. Rev. Lett. 93, 217206 (2004).
51. R. Seshadri and N. A. Hill, 'Visualizing the role of Bi 6s “Lone Pairs” in the Off-Center distortion in ferromagnetic BiMnO3', Chem. Mater. 13, 2892 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code