Responsive image
博碩士論文 etd-0722112-174712 詳細資訊
Title page for etd-0722112-174712
論文名稱
Title
離子對逆相層析及陰離子交換層析法結合感應耦合電漿質譜儀與電灑質譜儀於營養補給品和食物樣品中含硒化合物分析之應用
Determination of Selenium Compounds in Dietary Supplements and Foods Using Ion-pair Reversed-phase and Anion-exchange Chromatography ICP-MS and ESI-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-16
繳交日期
Date of Submission
2012-07-22
關鍵字
Keywords
含硒化合物、液相層析、電灑質譜儀、感應耦合電漿質譜儀
selenium, HPLC, ESI-MS, ICP-MS
統計
Statistics
本論文已被瀏覽 5647 次,被下載 1724
The thesis/dissertation has been browsed 5647 times, has been downloaded 1724 times.
中文摘要
硒是生物體必要之微量元素,其必須性與毒性僅一線之隔,然而依據不同之物種形態對於生物體之毒性與生物利用性亦有所差異,因此除了對總濃度進行偵測外,物種分析之結果更具代表性且更能提供重要之生物資訊;由於感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometry,ICP-MS) 具有靈敏度高、偵測極限低、線性範圍廣及同位素分析之能力等優點,因此藉由液相層析 (Liquid Chromatography,LC) 將物種分離後導入ICP-MS 進行分析之技術已成為廣泛應用於元素形態分析之最佳選擇之一,並同時搭配電噴灑質譜儀 (Electrospray Ionization Mass Spectrometry,ESI-MS),以鑑定ICP-MS 所缺乏之物種結構,可使其在定性與定量上獲得更完整之資訊。
第一部分研究是使用逆相層析結合感應耦合電漿質譜儀對營養補給品中含硒化合物之物種形態進行分析。層析系統中,利用離子對逆相層析 (Ion pair reverse phase,IP-RP) 機制,以Sodium 1-pentansulfonate (SPS) 作為離子對試劑,在最適化層析條件為2 mM SPS、1% MeOH 及10 mM citric acid 調控pH 至2.52,可成功於八分鐘內分離Selenate (Se(VI))、Selenite (Se(IV))、Selenocystine ((SeCys)2)、Se-(Methyl)selenocysteine (Se-MeSeCys) 及Selenomethionine (SeMet) 五個硒物種;另外為了減輕硒在ICP-MS 偵測時所遇到來自Ar 所造成之光譜干擾,因此使用動態反應槽 (Dynamic reaction cell,DRC) 以甲烷作為反應氣體,藉由電荷轉移機制將干擾去除,再經DRC 系統最適化後之偵測極限可介於0.02-0.07 μg L-1。利用此系統對SRM 與兩種市售硒錠營養補給品進行分析,其樣品萃取時添加蛋白酶 (Protease XIV) 以微波輔助酵素萃取 (Microwave-assisted enzyme extraction,MAEE)方式進行萃取,而各樣品之萃取效率皆可達100-102%,且各物種回收率亦可介於90-101% 之間,顯示此方法之可行性;實驗結果顯示在硒錠營養補給品中所含之硒物種不盡相同,包含以無機硒鹽類添加或藉由酵母菌之培養以獲得有機硒。
第二部分研究中則以離子層析結合感應耦合電漿質譜儀對食物樣品中硒物種之分析,層析使用陰離子交換管柱,以梯度沖提之方式,由0.1 mM ammonium citrate切換至20 mM,及於兩動相中添加1% MeOH,並調控pH 至3,其可於十分鐘內將Se(VI)、Se(IV)、(SeCys)2、Se-MeSeCys 及SeMet 五種硒物種達分離,同時亦使用DRC 系統以獲得更低之偵測極限,其值可介於0.02-0.09 μg L-1。將此系統應用於大蒜、羊奶片、硒蛋蛋黃之分析,真實樣品再經微波輔助酵素萃取,其萃取效率皆可介於99-103%,各物種回收率除硒蛋蛋黃與進口大蒜中之 (SeCys)2 外,其餘皆介在95-103% 之間;自然環境中之無機硒可經植物累積或動物體一連串之代謝而轉換成生物利用性較高之有機硒化合物,因此亦在實驗結果中顯示食物樣品皆以有機硒化合物為主,而無機硒含量較少,最後在進口大蒜未知物種之鑑定上,則是將經過管柱分離後的液滴收集,以ESI-MS 進行鑑定,經鑑定後可得知此化合物之結構為γ-gultamyl-Se-methylselenocysteine,而此化合物為常見於大蒜與洋蔥等蔥類植物中之含硒化合物,本實驗成功地得到樣品中未知物之結構。
Abstract
none
目次 Table of Contents
目錄
摘要...................................................................................................................................I
謝誌................................................................................................................................III
目錄................................................................................................................................IV
圖目錄.............................................................................................................................VI
表目錄..........................................................................................................................VIII
第一章 電噴灑質譜儀簡介
壹、原理...........................................................................................................................1
貳、參考文獻...................................................................................................................8
第二章 離子對逆相層析結合感應耦合電漿質譜儀於營養補給品中含硒化合物分析之應用
壹、前言...........................................................................................................................9
貳、動態反應槽原理.....................................................................................................11
參、實驗部分
一、儀器裝置.........................................................................................................15
二、藥品與溶液之配置.........................................................................................17
肆、實驗過程
一、液相層析條件最適化探討.............................................................................21
二、DRC-ICP-MS 系統最適化探討.....................................................................21
三、再現性.............................................................................................................24
四、校正曲線與偵測極限之估計.........................................................................24
五、萃取條件.........................................................................................................24
六、真實樣品分析.................................................................................................25
伍、結果與討論
一、液相層析條件最適化探討.............................................................................29
二、DRC-ICP-MS 系統最適化探討.....................................................................32
三、再現性.............................................................................................................36
四、校正曲線與偵測極限之估計.........................................................................41
五、真實樣品分析.................................................................................................41
陸、結論.........................................................................................................................51
柒、參考文獻.................................................................................................................52
第三章 陰離子交換層析結合感應耦合電漿質譜儀於食物樣品中含硒化合物分析之應用
壹、前言.........................................................................................................................57
貳、實驗部分
一、儀器裝置.........................................................................................................59
二、藥品與溶液配置.............................................................................................60
參、實驗過程
一、液相層析最適化探討.....................................................................................62
二、DRC-ICP-MS 系統最適化探討.....................................................................62
三、再現性.............................................................................................................63
四、校正曲線與偵測極限之估計.........................................................................63
五、萃取條件.........................................................................................................63
六、真實樣品分析.................................................................................................64
肆、結果與討論
一、液相層析最適化探討.....................................................................................66
二、DRC-ICP-MS 系統最適化探討.....................................................................70
三、再現性.............................................................................................................81
四、校正曲線與偵測極限之估計.........................................................................81
五、萃取條件.........................................................................................................81
六、真實樣品分析.................................................................................................85
七、含硒化合物之鑑定.........................................................................................95
伍、結論.......................................................................................................................100
陸、參考文獻...............................................................................................................101
圖目錄
第一章 電噴灑質譜儀簡介
圖1-1 電噴灑游離過程示意圖.........................................................................................3
圖1-2 電噴灑現象示意圖.................................................................................................4
圖1-3 帶電液滴形成氣相離子過程之理論.....................................................................5
圖1-4 離子阱 (Ion trap) 分析器之儀器構造..................................................................6
圖1-5 Ion trap 進行MSn 之原理.....................................................................................7
第二章 離子對逆相層析結合感應耦合電漿質譜儀於營養補給品中含硒化合物分析之應用
圖2-1 DRC-ICP-MS 儀器示意圖..................................................................................14
圖2-2 HPLC-DRC-ICP-MS 之系統圖...........................................................................16
圖2-3 離子對逆相層析分離原理...................................................................................22
圖2-4 實驗流程圖...........................................................................................................26
圖2-5 樣品萃取流程圖...................................................................................................28
圖2-6 動相中Sodium 1-pentanesulfonate 濃度對層析分離之影響..............................30
圖2-7 動相中Citric acid 濃度對層析分離之影響.........................................................31
圖2-8 改變氣體流速對硒分析物及背景訊號之影響...................................................33
圖2-9 改變氣體流速所得之訊雜比及預估針測極限...................................................34
圖2-10 改變Rpq 值所得預估偵測極限之影響.............................................................35
圖2-11 改變軸場電壓對硒分析物及背景訊號之影響.................................................37
圖2-12 硒物種在不同模式下之層析圖.........................................................................39
圖2-13 SRM 1567a wheat flour 萃取後所得硒物種之層析圖.....................................46
圖2-14 硒錠樣品#1 萃取後所得硒物種之層析圖........................................................48
圖2-15 硒錠樣品#2 萃取後所得硒物種之層析圖........................................................49
第三章 陰離子交換層析結合感應耦合電漿質譜儀於食物樣品中含硒化合物分析之應用
圖3-1 樣品萃取流程圖...................................................................................................65
圖3-2 動相中pH 值對層析分離之影響.........................................................................67
圖3-3 動相A中ammonium citrate 濃度對層析分離之影響.........................................68
圖3-4 動相B中ammonium citrate 濃度對層析分離之影響.........................................69
圖3-5 動相中MeOH濃度對層析分離之影響...............................................................71
圖3-6 改變氣體流速對硒分析物及背景訊號之影響...................................................74
圖3-7 改變氣體流速所得之訊雜比及預估偵測極限...................................................75
圖3-8 改變Rpq 值所得預估偵測極限之影響...............................................................77
圖3-9 改變軸場電壓對硒分析物及背景訊號之影響...................................................78
圖3-10 硒物種在不同模式下之層析圖.........................................................................80
圖3-11 SRM wheat flour 1567a 萃取後所得硒物種之層析圖.....................................87
圖3-12 本土大蒜萃取後所得硒物種之層析圖.............................................................89
圖3-13 羊奶片萃取後所得硒物種之層析圖.................................................................90
圖3-14 蛋黃萃取後所得硒物種之層析圖.....................................................................92
圖3-15 外國蒜萃取後所得硒物種之層析圖.................................................................93
圖3-16 以HPLC-ESI-MS 在MRM模式下三種有機硒物種之層析結果....................96
圖3-17 進口大蒜中硒物種之二次質譜圖.....................................................................98
圖3-18 進口大蒜中未知物之二次質譜圖.....................................................................99
表目錄
第一章 電噴灑質譜儀簡介
第二章 離子對逆相層析結合感應耦合電漿質譜儀於營養補給品中含硒化合物分析之應用
表2-1 硒物種與Citric acid 之化學式及解離常數pKa值..............................................19
表2-2 硒物種之結構式...................................................................................................20
表2-3 以ICP-MS分析硒時常見之光譜干擾.................................................................23
表2-4 微波消化步驟設定參數.......................................................................................27
表2-5 HPLC-DRC-ICP-MS 系統操作條件...................................................................38
表2-6 硒物種之滯留時間與分析訊號再現性...............................................................40
表2-7 硒物種之校正曲線與偵測極限...........................................................................42
表2-8 物種偵測極限與其他文獻比較...........................................................................43
表2-9 各樣品消化結果與萃取效率...............................................................................44
表2-10 SRM wheat flour 1567a 中硒物種之含量.........................................................47
表2-11 硒錠中硒物種之含量.........................................................................................50
第三章 陰離子交換層析結合感應耦合電漿質譜儀於食物樣品中含硒化合物分析之應用
表3-1 動相中甲醇濃度對於分析物訊號之影響...........................................................72
表3-2 液相層析系統之最適化分離條件.......................................................................73
表3-3 DRC-ICP-MS 系統操作條件...............................................................................79
表3-4 硒物種之滯留時間與分析訊號再現性...............................................................82
表3-5 硒物種之校正曲線與偵測極限...........................................................................83
表3-6 各樣品消化結果與萃取效率...............................................................................84
表3-7 SRM wheat flour 1567a 中硒物種之含量...........................................................88
表3-8 本土大蒜與羊奶片中硒物種之含量...................................................................91
表3-9 硒蛋蛋黃與進口大蒜中硒物種之含量...............................................................94
表3-10 硒物種之分子量與二次質譜碎片.....................................................................97
參考文獻 References
第一章 電噴灑質譜儀簡介
1. Dole, M.; Mach, L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B., Molecular beams of macroions. J. Chem. Phys. 1968, 49, 2240-2247.
2. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. J. Chem. Phys. 1984, 88, 4451-4459.
3. Wong, S. F.; Meng, C. K.; Fenn, J. B., Multlple charging in electrospray ionization of poly(ethy1ene glycols). J. Chem. Phys. 1988, 92, 546-550.
4. Kebarle, P.; Tang, L., From ions in solution to ions in the gas phase-The mechanism of electrospray mass spectrometry. Anal. Chem. 1993, 65, 972A-986A.
5. 黃炳誠. 電噴灑離子阱串聯質譜儀在磷脂結構分析之應用. 國立東華大學, 花蓮縣, 2002.
6. Kebarle, P.; Peschke, M., On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Anal. Chim. Acta 2000, 406, 11-35.
7. Iribarne, J. V.; Thomson, B, A., On the evaporation of small ions from charged droplets. J. Chem. Phys. 1976, 64, 2287-2294.
8. Wang, G.; Cole, R. B., Charged residue versus ion evaporation for formation of alkali metal halide cluster ions in ESI. Anal. Chim. Acta 2000, 406, 53-65.
9. 王正博、王時光、張建偉, “離子儲存、冷卻及在量子頻標中的應用”, 清華大學百年校慶專刊、論文. 41: 350-355 2011
10. Cox, K. A.; Cleven, C. D.; Cooks, R. G., Mass shifts and local space-charge effects observed in the quadrupole ion-trap at higher resolution. Int. J. Mass Spectr. Ion Proc. 1995, 144, 47-65.
11. Raymond, E. M.; John, F. J. T., Quadrupole ion trap mass spectrometry. 2005.
第二章 離子對逆相層析結合感應耦合電漿質譜儀於營養補給品中含硒化合物分析之應用
1. Chen, X. S.; Yang, G. Q.; Chen, X. C.; Wen, Z. M.; Ge, K. Y., Studies on the relations of selenium and keshan disease. Biol. Trace Elem. Res. 1980, 2, 91-107.
2. Gerald, F.; Combs, J., Selenium in global food systems. Br. J. Nutr. 2001, 85, 517-547.
3. Birringer, M.; Pilawa, S.; Flohé, L., Trends in selenium biochemistry. Nat. Prod. Rep. 2002, 19, 693–718.
4. Rayman, M. P., Selenium in cancer prevention: A review of the evidence and mechanism of action. Proc. Nutr. Soc. 2005, 64, 527-542.
5. Abdulah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H. Chemical forms of selenium for cancer prevention. J. Trace Elem. Med Biol. 2005, 19, 141-150.
6. Dumont, E.; Vanhaecke, F.; Cornelis, R., Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem. 2006, 385, 1304-1323.
7. 行政院衛生署 國人膳食營養素參考攝取量及其說明第六修訂版;行政院衛生署2003, pp. 422-447.
8. Rayman, M. P.; Infante, H. G.; Sargent, M., Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr. 2008, 100, 238-253.
9. Michalke, B., Capillary electrophoresis methods for a clear identification of seleno amino acids in complex matrices like human milk. Fresenius’ J. Anal. Chem. 1995, 351, 670-677.
10. Amoako, P. O.; Uden, P. C.; Tyson, J. F., Speciation of selenium dietary supplements; formation of S-(methylseleno)cysteine and other selenium compounds. Anal. Chim. Acta 2009, 652, 315-323.
11. Thiry, C.; Ruttens, A.; Temmerman, L. D.; Schneider, Y. J.; Pussemier, L., Current knowledge in species-related bioavailability of selenium in food. Food Chem. 2012, 130, 767-784.
12. Bird, S. M.; Ge, H.; Uden, P. C.; Tysona, J. F.; Block, E.; Denoyer, E., High-performance liquid chromatography of selenoamino acids and organo selenium compounds Speciation by inductively coupled plasma mass spectrometry. J. Chromatogr. A 1997, 789, 349-359.
13. Stadlober, M.; Sager, M.; Irgolic, K. J., Effects of selenate supplemented fertilisation on the selenium level of cereals — identification and quantification of selenium compounds by HPLC–ICP–MS. Food Chem. 2001, 73, 357-366.
14. Chen, B.; He, M.; Mao, X.; Cui, R.; Pang, D.; Hu, B., Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation. Talanta 2011, 83, 724–731.
15. McSheehy, S.; Yang, W.; Pannier, F.; Szpunar, J.; Łobiński, R.; Auger, J.; Potin-Gautier M., Speciation analysis of selenium in garlic by two-dimensional high-performance liquid chromatography with parallel inductively coupled plasma mass spectrometric and electrospray tandem mass spectrometric detection. Anal. Chim. Acta 2000, 421, 147-153.
16. Kapolna, E.; Shah, M.; Caruso, J. A.; Fodor, P., Selenium speciation studies in Se-enriched chives (Allium schoenoprasum) by HPLC-ICP-MS. Food Chem. 2007, 101, 1415–1423.
17. Cankur, O.; Yathavakilla, S. K. V.; Caruso, J. A., Selenium speciation in dill (Anethum graveolens L.) by ion pairing reversed phase and cation exchange HPLC with ICP-MS detection. Talanta 2006, 70, 784–790.
18. Gergely, V.; Kubachka, K. M.; Mounicou, S.; Fodor, P.; Caruso, J. A., Selenium speciation in Agaricus bisporus and Lentinula edodes mushroom proteins using multi-dimensional chromatography coupled to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2006, 1101, 94–102.
19. Mounicou, S.; Shah, M.; Meija, J.; Caruso, J. A.; Vonderheide, A. P.; Shann, J., Localization and speciation of selenium and mercury in Brassica juncea-Implications for Se-Hg antagonism. J. Anal. At. Spectrom. 2006, 21, 404–412.
20. Gammelgaard, B.; Bendahl, L., Selenium speciation in human urine samples by LC and CE-ICP-MS-separation and identification of selenosugars. J. Anal. At. Spectrom. 2004, 19, 135–142.
21. Field, M. P.; Cullen, J. T.; Sherrell, R. M., Direct determination of 10 trace metals in 50 mL samples of coastal seawater using desolvating micronebulization sector field ICP-MS. J. Anal. At. Spectrom. 1999, 14, 1425-1431.
22. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta Part B 2002, 57, 1361-1452.
23. Tanner, S. D.; Baranov, V. I., Theory, design, and operation of a dynamic reaction cell for ICP-MS. At. Spectrosc. 1999, 20, 45-52.
24. Tanner, S. D.; Baranov, V. I., A dynamic reaction cell for inductiviely coupled plasma mass spectrometry (ICP-DRC-MS). II. Reaction of interferences produced within the cell. J. Am. Soc. Mass Spectrom. 1999, 10, 1083-1094.
25. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass Spectrom. 2002, 13, 1176-1185.
26. Larsen, E. H.; Hansen, M.; Fan, T.; Vahl, M., Speciation of selenoamino acids, selenium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J. Anal. At. Spectrom. 2001, 16, 1403-1408.
27. Silva, A. M. N.; Kong, X.; Hider, R. C., Determination of the pKa value of the hydroxyl group in the α-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems. Biometals 2009, 22, 771-778.
28. Pedrero, Z.; Madrid, Y., Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal. Chim. Acta 2009, 634, 135-152.
29. 謝雨哲. 液相層析結合感應耦合電漿質譜儀與電灑質譜儀於營養補給品中含硒化和物與藍綠藻中含砷化合物之分析應用. 國立中山大學, 高雄市, 2011.
30. Tsai, C. Y.; Jiang, S. J.; Microwave-assisted extraction and ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry for the speciation analysis of arsenic and selenium in cereals. Anal. Sci. 2011, 27, 271-276.
31. B’Hymer, C.; Caruso, J. A., Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J. Chromatogr. A 2006, 1114, 1-20.
32. Pyrzynska, K., Selenium speciation in enriched vegetable. Food Chem. 2009, 114, 1183-1191.
33. Gilon, N.; Astruc, A.; Astruc, M.; Potin-Gautier, M., Selenoamino acid speciation using HPLC-ETAAS following an enzymatic hydrolysis of selenoprotein. John Wiley & Sons, Ltd.: 1995; Vol. 9, pp 623-628.
34. Tsopelas, F. N.; Ochsenkuhn-Petropoulo, M. T.; Mergias, I. G.; Tsakanika, L. V., Comparison of ultra-violet and inductively coupled plasma-atomic emission spectrometry for the on-line quantification of selenium species after their separation by reversed-phase liquid chromatography. Anal. Chim. Acta 2005, 539, 327-333.
35. Uden, P. C.; Boakye, H. T.; Kahakachchi, C.; Hafezi, R.; Nolibos, P.; Block, E.; Johnson, S.; Tyson, J. F., Element selective characterization of stability and reactivity of selenium species in selenized yeast. J. Anal. At. Spectrom. 2004, 19, 65-73.
36. Dumont, E.; Cremer, K. D.; Hulle, M. V.; Cheŕy, C. C.; Vanhaecke, F.; Cornelis, R., Separation and detection of Se-compounds by ion pairing liquid chromatography-microwave assisted hydride generation-atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2004, 19, 167-171.
37. Zhao, Y. Q.; Zheng, J. P.; Yang, M. W.; Yang, G. D.; Wu, Y. N.; Fu, F. F., Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 2011, 84, 983–988.
38. Eskilsson, C. S.; Björklund, E., Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227-250.
39. Chan, C. H.; Yusoff, R.; Ngoh, G. C.; Kung, F. W. L., Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213-6225.
40. Srbek, J.; Coufal, P.; Bosakova, Z.; Tesarova, E., System peaks and their positive and negative aspects in chromatographic techniques. J. Sep. Sci. 2005, 28, 1263-1270
41. Hu, L.; Dong, Z. Q.; Huang, X. H.; Li, Y. F.; Li, B.; Qu, L. Y.; Wang, G. P.; Gao, Y. X.; Chen, C. Y., Analysis of small molecular selenium species in serum samples from mercury-exposed people supplemented with selenium-enriched yeast by anion exchange-inductively coupled plasma mass spectrometry. Chin. J. Anal. Chem. 2011, 39, 466.
42. Yang, Y.; Lei, L., Ke, Y.; Shuzhen, Z., Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologia 2011, 54, 267– 272.
43. Peachey, E.; Cook, K.; Castles, A.; Hopley, C.; Goenaga-Infante, H., Capabilities of mixed-mode liquid chromatography coupled to inductively coupled plasma mass spectrometry for the simultaneous speciation analysis of inorganic and organically-bound selenium. J. Chromatogr. A 2009, 1216, 7001.
44. Afton, S.; Kubachka, K.; Catron, B.; Caruso, J. A., Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection applications to river water, plant extract and urine matrices. J. Chromatogr. A 2008, 1208, 156.
45. Ayouni, L.; Barbier, F.; Imbert, J. L.; Gauvrit, J. Y.; Lantéri, P.; Grenier-Loustalot, M. F., New separation method for organic and inorganic selenium compounds based on anion exchange chromatography followed by inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2006, 385, 1504-1512.
46. Yu, H.; Chen, C.; Gao, Y.; Li, B.; Chai, Z., Selenium speciation in biological samples using a hyphenated technique of high-performance liquid chromatography and inductively coupled plasma mass spectrometry. Chin. J. Anal. Chem. 2006, 34, 749.
第三章 陰離子交換層析結合感應耦合電漿質譜儀於食物樣品中含硒化合物分析之應用
1. Pyrzynska, K., Selenium speciation in enriched vegetables. Food Chem. 2009, 114, 1183-1191.
2. Rispin, A.; Farrar, D.; Margosches, E.; Gupta, K.; Stitzel, K.; Carr, G.; Greene, M.; Meyer, W.; McCall, D., Alternative methods for the median lethal dose (LD50) Test: the up-and down procedure for acute oral toxicity. ILAR J. 2002, 43, 233-243.
3. Schrauzer, G. N., Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000, 130, 1653-1656.
4. Aguilar, F.; Charrondiere, U. R.; Dusemund, B.; Galtier, P.; Gilbert, J.; Gott, D. M.; Grilli, S.; Guertler, G. E. N.; Koenig, J.; Lambré, C.; Larsen, J-C.; Leblanc, J-C.; Mortensen, A.; Parent-Massin, D.; Pratt, I.; Rietjens, I. M. C. M.; Stankovic, I.; Tobback, P.; Verguieva, T.; Woutersen, R., Se-methyl-L-selenocysteine added as a source of selenium for nutritional purposes to food supplements. The EFSA Journal 2009, 1067, 1-23.
5. Ellis, R. D.; Salt, E. D., Plants, selenium and human health. Curr. Opin. Plant Biol. 2003, 6, 273-279.
6. Hu, Y.; Mcintosh, G. H.; Le Leu, R. K.; Woodman, R.; Young, G. P., Suppression colorectal oncogenesis by selenium-enriched milk proteins: Apoptosis and K-rasmutations. Cancer Res. 2008, 68, 4936-4944.
7. Ip, C.; Birringer, M.; Block, E.; Kotrebai, M.; Tyson, J. F.; Uden, P. C.; Lisk, D. J., Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J. Agr. Food Chem. 2000, 48, 2062-2070.
8. Dumont, E.; Vanhaecke, F.; Cornelis, R., Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem. 2006, 385, 1304-1323.
9. B’Hymer, C.; Caruso, J. A., Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J. Chromatogr. A 2006, 1114, 1-20.
10. Nakamuro, K.; Okuno, T.; Hasegawa, T., Metabolism of selenoamino acids and contribution of selenium methylation to their toxicity. J. Health Sci. 2000, 46, 418-421.
11. Arnault, I.; Auger, J., Seleno-compounds in garlic and onion. J. Chromatogr. A 2006, 1112, 23-30.
12. Hu, L.; Dong, Z. Q.; Huang, X. H.; Li, Y. F.; Li, B.; Qu, L. Y.; Wang, G. P.; Gao, Y. X.; Chen, C. Y., Analysis of small molecular selenium species in serum samples from mercuty-exposed people supplemented with selenium-enriched yeast by anion exchange-inductively coupled plasma mass spectrometry. Chin. J. Anal. Chem. 2011, 39, 466-470.
13. Peachey, E.; Cook, K.; Castles, A.; Hopley, C.; Goenaga-Infante, H., Capabilities of mixed-mode liquid chromatography coupled to inductively coupled plasma mass spectrometry for the simultaneous speciation analysis of inorganic and organic-bound selecium. J. Chromatogr. A 2009, 1216, 7001-7006.
14. Ayouni, L.; Barbier, F.; Imbert, J. L.; Gauvrit, J. Y.; Lantéri, P.; Grenier-Loustalot, M. F., New separation method for organic and inorganic selenium compounds based on anion exchange chromatography followed by inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2006, 385, 1504-1512.
15. Kokarnig, S.; Kuehnelt, D.; Stiboller, M.; Hartleb, U.; Francesconi, K. A., Quantitative determination of small selenium species in human serum by HPLC/ICPMS following a protein-removal, pre-concentration procedure. Anal. Bioanal. Chem. 2011, 400, 2323-2327.
16. Mcsheehy, S.; Yang, L.; Sturgeon, R.; Mester, Z., Determination of Methionine and Selenomethionine in Selenium-Enriched Yeast by Species-Specific Isotope Dilution with Liquid Chromatography-Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry Detection. Anal. Chem. 2005, 77, 344-349.
17. Mounicou, S.; Dernovics, M.; Bierla, K.; Szpunar, J., A sequential extraction procedure for an insight into selenium speciation in garlic. Talanta, 2009, 77, 1877-1882.
18. Wróbel, K.; Wróbel, K.; Kannamkumarath, S. S.; Caruso, J. A.; Wysocka, I. A.; Bulska, E.; Światek, J.; Wierzbicka, M., HPLC–ICP-MS speciation of selenium in enriched onion leaves – a potential dietary source of Se-methylselenocysteine. Food Chem. 2004, 86, 617-623.
19. Zheng, J.; Ohata, M.; Furuta, N.; Kosmus, W., Speciation of selenium compounds with ion-pair reversed-phase liquid chromatography using inductively coupled plasma mass spectrometry as element-specific detection. J. Chromatogr. A 2000, 874, 55-64.
20. Gammelgaard, B.; Jackson, M. I.; Gabel-Jensen, C., Surveying selenium speciation from soil to cell-forms and transformations. Anal. Bioanal. Chem. 2011, 399, 1743-1763.
21. Gammelgaard, B.; Gabel-Jensen, C.; Stürup, S.; Hansen, H. R., Complementary use of molecular and element-specific mass spectrometry for identification of selenium compounds related to human selenium metabolism. Anal. Bioanal. Chem. 2008, 390, 1691-1706.
22. Shah, M.; Kannamkumarath, S. S.; Wuilloud, J. C. A.; Wuilloud, R. G.; Caruso, J. A., Identification and characterization of selenium species in enriched green onion (Allium fistulosum) by HPLC-ICP-MS and ESI-ITMS. J. Anal. At. Spectrom. 2004, 19, 381-386.
23. Ogra, Y.; Ishiwata, K.; Iwashita, Y.; Suzuki, K. T., Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by HPLC-inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 2005, 1093, 118-125.
24. Mcsheehy, S.; Yang, W.; Pannier, F.; Szpunar, J.; Łobiński, R.; Auger, J.; Gautier-Potin, M., Speciation analysis of selenium in garlic by two-dimensional high-performance liquid chromatography with parallel inductively coupled plasma mass spectrometric and electrospray tandem mass spectrometric detection. Anal. Chim. Acta 2000, 421, 147-153.
25. Fang, Y.; Zang, Y.; Catron, B.; Chan, Q.; Hu, Q.; Caruso, J. A., Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J. Anal. At. Spectrom. 2009, 24, 1657-1664.
26. 郭家怡. 液相層析結合動態反應管感應耦合電漿質譜儀於環境及生物樣品中鉻、釩、硒及碲物種分析之應用. 國立中山大學, 高雄市, 2007.
27. 蔡佳穎. 液相層析結合感應耦合電漿質譜儀於環境樣品中鉻與硒及穀物樣品中砷與硒型態分析之應用. 國立中山大學, 高雄市, 2009.
28. Gilon, N.; Astruc, A.; Astruc, M.; Potin-Gautier, M., Selenoamino acid speciation using HPLC-ETAAS following an enzymatic hydrolysis of selenoprotein. John Wiley & Sons, Ltd.: 1995; Vol. 9, pp 623-628.
29. Wang, W. H.; Chen, Z. L.; Davey, D. E.; Naidu, R., Extraction of selenium species in pharmaceutical tablets using enzymatic and chemical methods. Microchim. Acta 2009, 165, 167-172.
30. Huerta, V. D.; Reyes, L. H.; Marchante-Gayon, J. M.; Sanchez, M. L. F.; Sanz-Medel, A., Total determination and quantitative speciation analysis of selenium in yeast and wheat flour by isotope dilution analysis ICP-MS. J. Anal. At. Spectrom. 2003, 18, 1243-1247.
31. Mar, J. L. G.; Reyes, L. H.; Rahman, G. A. M.; Kingston, H. M. S., Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-inductively Coupled Plasma-Mass Spectrometry. J. Agric. Food Chem. 2009, 57, 3005-3013.
32. Larsen, E. H.; Sturup, S., Carbon-enhanced Inductively Coupled Plasma Mass Spectrometric of Arsenic and Selenium and its Application to Arsenic speciation. J. Anal. At. Spectrom. 1994, 9, 1099-1105.
33. Hu, Z.; Hu, S.; Gao, S.; Liu, Y.; Lin, S., Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone, Spectrochim. Acta Part B 2004, 59, 1463–1470.
34. 謝雨哲. 液相層析結合感應耦合電漿質譜儀與電灑質譜儀於營養補給品中含硒化和物與藍綠藻中含砷化合物之分析應用. 國立中山大學, 高雄市, 2011.
35. Pyrzynska, K., Selenium speciation in enriched vegetables. Food Chem. 2009, 114, 1183-1191.
36. Bierla, K.; Szpunar, J.; Lobinski, R., Specific determination of selenoaminoacids in whole milk by 2D size-exclusion-ion-paring reversed phase high-performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC–ICP MS). Anal. Chim. Acta 2008, 624, 195-202.
37. Ma, S.; Caprioli, R. M., Loss of Selenium from Selenoproteins: Conversion of Selenocysteine to Dehydroalanine In Vitro. J. Am. Soc. Mass. Spectrom. 2003, 14, 593-600.
38. Lindemann, T.; Hintelmann, H., Selenium speciation by HPLC with tandem mass spectrometric detection. Anal. Bioanal. Chem. 2002, 372, 486-490.
39. Domont, E.; Ogra, Y.; Suzuki, K. I.; Vanhaecke, F.; Cornelis, R., Liquid chromatography-electrospray ionization tandem mass spectrometry for on-line characterization, monitoring and isotopic profile of the main selenium-metabolite in human urine after consumption of Se-rich and Se-enriched food. Anal. Chim. Acta 2006, 555, 25-33.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code