Responsive image
博碩士論文 etd-0722113-005402 詳細資訊
Title page for etd-0722113-005402
論文名稱
Title
運用微機電系統技術開發可應用於K頻帶之懸浮式共平面波導濾波器
Development of Suspended Coplanar Waveguide Filter for K-band Application Using MEMS Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-31
繳交日期
Date of Submission
2013-08-22
關鍵字
Keywords
面型微加工、射頻微機電、濾波器、共平面波導、懸浮
suspension, filter, RF-MEMS, surface micromachining, CPW
統計
Statistics
本論文已被瀏覽 5763 次,被下載 0
The thesis/dissertation has been browsed 5763 times, has been downloaded 0 times.
中文摘要
濾波器在無線通訊系統中是不可或缺的重要元件,其主要功能在於選擇所需要的傳輸頻率並且抑制各種雜訊干擾。傳統共平面波導濾波器因不具懸浮結構而導致其介質損耗較高,為改善此問題,本論文運用微機電面型微加工製程技術開發懸浮式共平面波導濾波器,以降低介質損耗並提升品質因子。

為降低共平面波導濾波器之損耗及提高品質因子,本論文對於結構設計與製程整合提出以下三種方法:(i)採用高電導率及低成本之銅金屬作為元件主結構以降低導體損耗;(ii)利用高度為50 μm銅柱支撐共平面波導濾波器,使其懸浮於矽基板以降低介質損耗;(iii)犧牲層選用厚膜光阻(AZ4620),利用多次塗佈使其厚度為50 μm。

本論文所設計製作之懸浮式共平面波導濾波器其面積為5 mm × 5 mm,藉由網路分析儀量測該元件在18 ~ 30 GHz之高頻特性,量測結果顯示其中心頻率為25.5 GHz (設計目標為24 GHz)、插入損耗為-6.22 dB (設計目標為-2.8 dB)、相對頻寬以及品質因子分別為2.74% (設計目標為4%)與36.4 (設計目標為25),故可證明共平面波導濾波器具懸浮結構之設計,可有效降低相對頻寬與提高品質因子。
Abstract
Filters play a very important role in wireless communication system, its main function is selecting desired signal and rejecting interference. Owing to the conventional coplanar waveguide filters demonstrate higher dielectric loss without suspended structure, for this issue, this thesis presents the suspended coplanar waveguide filter utilizing surface micromachining technology to reduce the dielectric loss and improve the quality factor.

In order to improve quality factor and loss, the main fabrication processes in this thesis including: (i) adopt high conductivity and low cost of copper as main structure to reduce the conductor loss, (ii) improve dielectric loss by employing the 50 μm-gap space suspended to coplanar waveguide filter from the silicon substrate, (iii) utilize multi-coating to achieve 50 μm photoresist (AZ4620) as sacrificial layer.

This chip size of fabricated suspended coplanar waveguide filter is 5 mm × 5 mm and fix the measuring condition of frequency range with 18 ~ 30 GHz by network analyzer. Measurement results demonstrate the center frequency of 25.5 GHz (aim to 24 GHz), insertion loss of -6.22 dB (aim to -2.81 dB), fractional bandwidth and quality factor are 2.74% (aim to 4%) and 36.4 (aim to 25), respectively. From above measurement results, the fractional bandwidth and quality factor can be further improved by utilizing surface micromachining technology.
目次 Table of Contents
摘要…………………………………………......………i
Abstract…………………………………………………ii
誌謝………………………………………………..……iii
目錄……………...…………………………..…………iv
圖目錄……………………………...……...……………v
表目錄…………………………………….……………vii
第一章 緒論..........................................................1
1.1 前言.............................................................1
1.2 研究動機與背景............................................2
1.3 實驗方法及論文架構......................................6
第二章 CPW濾波器設計理論簡介...........................7
2.1 濾波器之特性指標........................................7
2.2 .CPW濾波器之結構設計............................9
2.2.1 CPW濾波器之特性阻抗..........................9
2.2.2 CPW濾波器之共振腔.............................12
2.2.3 CPW濾波器之損耗................................14
第三章 懸浮式CPW濾波器之模擬設計與製作.........18
3.1 懸浮式CPW濾波器之高頻特性模擬...............18
3.2 銅電鍍沉積製程技術簡介.............................23
3.3 微機電面型微加工製程技術簡介...................26
3.4 懸浮式CPW濾波器之光罩佈局設計...............27
3.5 懸浮式CPW濾波器之製程整合......................28
3.6 懸浮式CPW濾波器之製程步驟及參數............29
第四章 實驗與量測結果.........................................39
4.1 懸浮式CPW濾波器關鍵製程技術之開發.........39
4.1.1 厚膜光阻塗佈與微影技術........................39
4.1.2 金屬附著層之蝕刻製程技術.....................41
4.1.3 銅種子層之物理氣相沉積技術..................44
4.1.4 銅結構之電鍍沉積技術 ............................44
4.2 懸浮式CPW濾波器之高頻特性量測................47
第五章 結論與未來展望........................................51
5.1 結論............................................................51
5.2 未來展望.....................................................52
參考文獻..............................................................54
參考文獻 References
[1] K. Y. Chan, R. Ramer, and R. R. mansour, “Novel miniaturized RF MEMS staircase switch matrix,” IEEE Microw. Wireless Compon. Lett. 22(3), 117-119 (2012).

[2] A. M. Elshurafa, P. H. Ho, and K. N. Salama, “Low voltage RF MEMS variable capacitor with linear C-V response,” Electron. Lett. 48(7), 392-393 (2012).

[3] T. B. Oogarah, M. Daneshmand, R. R. mansour, and S. Chang, “Novel low-temperature variable inductors using porous anodic alumina,” IET Microw. Antennas Propag. 5(11), 1274-1279 (2011).

[4] H. Wang, H. Zhong, Y. Shi, and K. Y. Hashimoto, “Design of narrow bandwidth elliptic-type SAW/BAW filters,” Electron. Lett. 48(10), 539-540 (2012).

[5] A. Zohur, H. Mopidevi, D. Rodrigo, M. Unlu, L. Jofre, and B. A. Cetiner, “RF MEMS reconfigurable two-band antenna,” IEEE Antennas Wireless Propag. Lett. 12, 72-75 (2013).

[6] B. Razavi, “Design of analog CMOS integrated circuits,” McGraw Hill, New York (2000).

[7] B. Razavi, “RF microelectronics,” Prentice Hall, Upper Saddle River (1997).

[8] D. D. Grieg, and H. F. Engelmann, “Microstrip-a new transmission technique for the klilomegacycle range,” Proc. IRE 40(12), 1644-1650 (1952).

[9] J. C. Lu, C. K. Liao, and C. Y. Chang, “Microstrip parallel-coupled filters with cascade trisection and quadruplet responses,” IEEE Trans. Microw. Theory Techn. 56(9), 2101-2110 (2008).

[10] S. S. Myoung, Y. P. Hong, Y. Zee, B. J. Jang, and J. G. Yook, “Miniaturised hairpin tunable filter with single control voltage,” Electron. Lett. 44(10), 2101-2110 (2008).

[11] E. G. Cristal, and S. Frankel, “Hairpin-line and hybrid hairpin-line half-wave parallel-coupled-line filters,” IEEE Trans. Microw. Theory Techn. 20(11), 719-728 (1972).

[12] J. W. Bandler, R. Biernacki, S. H. Chen, and Y. F. Huang, “Design optimization of interdigital filters using aggressive space mapping and decomposition,” IEEE Trans. Microw. Theory Techn. 45(5), 761-769 (1997).

[13] C. W. Tang, and L. P. Lu, “Design of triple-passband bandpass filter with interdigital resonators,” Electron. Lett. 44(25), 1472-1473 (2008).

[14] C. H. Wang, Y. S. Lin, and C. H. Chen, “Novel inductance-incorporated microstrip coupled-line bandpass filters with two attenuation poles,” IEEE MTT-S International Microwave Symposium Digest. 1979-1982, Fort Worth, Texas U.S.A (2004).

[15] C. P. Wen, “Coplanar Waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE T Micro Theory. 17(12), 1087-1090 (1969).

[16] D. Chen, and C. H. Cheng, “Coplanar waveguide bandpass filter using quarter-wavelength resonators,” Electron Lett. 43(9), 526-527 (2007).

[17] D. M. Pozar, “Microwave engineering,” John Wiley & Sons, Danvers (2004).

[18] Rainee N Simons, “Coplanar waveguide circuits components and systems,” John Wiley & Sons, New York (2001)

[19] H. Jiang, B. Lacroix, K. Choi, Y. Wang, A. T. Hunt, and J. Papapolymerou, “Ka- and U-band tunable bandpass filters using ferroelectric capacitors,” IEEE Trans. Microw. Theory Techn. 45(5), 761-769 (1997).

[20] M. Schlesinger and M. Paunovic, “Modern electroplating,” John Wiley & Sons, Danvers (2000)

[21] Liu 原著,黃義佑 總校閱,微機電系統原理與應用,培生出版,2008

[22] G. Goussetis, R. Lopez-Villarroya, E. Doumanis, O.S. Arowolo and J. S. Hong, “Quality factor of E-plane periodically loaded waveguide resonators and filter applications,” IET Microw. Antennas Propag. 5(7), 818-822 (2011).

[23] C. L. Yang, S. Y. Shu, and Y. C. Chiang, “Design of a K-Band Chip Filter With Three Tunable Transmission Zeros Using a Standard 0.13-CMOS Technology,” IEEE Trans. Circuits Syst. Express Briefs. 57(7), 525-526 (2010).

[24] K. Joshin, Y. Kawano, X. Mi, O. Toyoda, T. uzuki, Hirose, Tatsuya, and S. Ueda, “K-band CMOS-based power amplifier module with MEMS tunable bandpass filter,” Microwave Integrated Circuits Conference (EuMIC). 440-443, Paris, France. (2010).

[25] C. W. You and Y. S. Lin, “A 24-GHz single-to-balanced multicoupled line bandpass filter in CMOS technology,” Microwave Conference Proceedings (APMC). 262-264, Kaohsiung, Taiwan. (2012).

[26] J. S. Hong and M. J. Lancaster, “Microstrip filters for RF/microwave applications,” John Wiley & Sons, New York (2004)

[27] 蕭宏 原著,張鼎章 譯,半導體製程技術導論,培生出版,2007

[28] 鄧羽廷,運用微機電技術開發具懸浮結構之巴倫器,國立中山大學電機工程學系碩士論文,2011
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.22.181.209
論文開放下載的時間是 校外不公開

Your IP address is 3.22.181.209
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code