Responsive image
博碩士論文 etd-0722113-091154 詳細資訊
Title page for etd-0722113-091154
論文名稱
Title
無模拉製成形之熱傳解析及無模線材拉製系統之設計
Thermal Analysis during Dieless Drawing Forming and Design of a Dieless Drawing System of Wires
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-22
繳交日期
Date of Submission
2013-08-22
關鍵字
Keywords
無模拉製成形、成形性、不鏽鋼管材、有限元素分析、熱傳解析模式
thermal analysis, F.E. analysis, dieless drawing, formability, stainless steel tube
統計
Statistics
本論文已被瀏覽 5723 次,被下載 1058
The thesis/dissertation has been browsed 5723 times, has been downloaded 1058 times.
中文摘要
本研究首先使用一無模拉製雛型機,進行一系列之拉製實驗。探討不鏽鋼管材之最佳成形溫度範圍,及拉製速度、拉製加速度和速度比對管材成形性的影響。實驗結果顯示,可成形之最大斷面縮減率為50 %、管材最佳成形溫度範圍落在1000℃到1100℃。並且探討拉製速度和拉製加速度對管材成形性和成形後產品尺寸的影響。利用有限元素分析,來觀察不鏽鋼管材在拉製初期之應力分佈和不鏽鋼管材達到穩定成形後之應變分佈。
採用一維熱傳理論,推導出管材在拉製方向之熱傳解析模式。利用此熱傳解析模式可快速求得管材之溫度分佈。利用K型熱電偶來量測管材加熱過程之溫度歷時量測值,並且搭配有限元素模擬,來求得熱傳解析模式中之熱傳參數,如空氣熱對流係數、管材加熱區之熱通量係數等。藉由實驗所量測到的管材溫度分佈值和熱傳溫度解析值進行比較,來驗證熱傳解析模式之適用性。最後,為了可讓細線金屬材料來施行無模拉製,於是進行細線無模拉製系統的設計。
Abstract
This study used a self-developed prototype machine to conduct a series of experiments, and discuss the best forming temperature range for stainless steel tube drawing. The influences of the drawing speeds, the drawing accelerations and the velocity ratios on the formability of the tube were also discussed. The maximum reduction of area obtained can reach about 50% and the best forming temperature range is between 1000℃ and 1100℃ from the experiments. In addition, the effects of drawing speeds and drawing accelerations on the formability and the product size of the tube are investigated by using the finite element analysis. The finite element simulation results are used to investigate the effective stress at the early drawing stage and the effective strain distribution of the product.
One dimensional thermal theory is applied to build the thermal model in the drawing direction. Temperature distribution of tube can be obtained immediately using this analytical model. K-type thermocouples were used to measure the temperature history of tube during the heating process Parameter in the model, sush as air heat transfer coefficient, heat flux in the heating zone of tube are determined by comparing finite element simulation results and the measured temperatures. The validity of the thermal analytical model was verified by comparing the experimentally obtained temperature distribution of the tube. Finally, a dieless drawing system was designed for thin wire of metals.
目次 Table of Contents
第一章 緒論 1
1-1 前言 1
1-2 拉製加工成形技術簡介 2
1-3 無模拉製文獻回顧 3
1-3-1 無模拉製線材 4
1-3-2 無模拉製管材 5
1-3-3 無模拉製法應用 6
1-4 本論文之研究目的 8
1-5 論文架構 8
第二章 無模拉製成形實驗 9
2-1 實驗機台介紹 9
2-1-1 加熱系統 10
2-1-2 傳動系統 13
2-1-3 控制系統 15
2-1-4 無模拉製機台操作流程與運轉機制 15
2-2 無模拉製成形實驗 17
2-2-1 斷面縮減率 17
2-2-2管材可成形溫度範圍與成形極限拉製速度實驗 22
2-2-3不同拉製加速度之管材成形實驗 30
2-3 無模拉製成形有限元素分析 32
第三章 熱傳解析 38
3-1 熱傳解析方程式 38
3-1-1 加熱區未變形之熱傳方程式建立 39
3-1-2 加熱區有變形(無模拉製)之熱傳方程式建立 50
3-2 熱傳方程式相關係數求得 54
3-2-1 求得空氣熱對流h係數之實驗 59
3-2-2 求得空氣熱對流h係數之模擬 62
3-2-3 求得熱通量q_h^'係數 68
3-2-4 解出T_i 、T_1溫度值 72
3-3 加熱區未變形之溫度分佈 74
3-3-1 熱傳解析曲線之求得 74
3-3-2 熱傳解析與實驗、有限元素模擬之比較 76
3-3-3 熱傳導係數和空氣熱對流係數對溫度分佈之影響 82
3-4 加熱區有變形(無模拉製)之溫度分佈 87
3-4-1 熱傳解析曲線之求得 87
3-4-2 熱傳解析與實驗之比較 90
第四章 微細線材之無模拉製雛型機設計 98
4-1 超高頻高週波加熱法 99
4-2 阻抗式加熱方法 99
4-2-1 實驗機台介紹 100
4-2-2 傳動系統 101
4-2-3 加熱系統 102
4-3 高週波加熱與阻抗式加熱之比較 105
4-3-1 機台控制系統比較 105
4-3-2 加熱方法之比較 106
4-3-3 高週波和阻抗式加熱之優缺點 107
第五章 結論 108
5-1 研究成果與概要 108
5-1-1 無模拉製成形性實驗 108
5-1-2 無模拉製熱傳解析模式 109
5-1-3 微細線材之無模拉製雛型機設計 110
5-2 今後研究課題 110
參考文獻 112
參考文獻 References
[1] 塑性加工技術シリ一ズ6-引抜き加工,日本塑性加工學會 (1990)。
[2] 塑性加工學,許泉源,全華圖書,2008年8月。
[3] M. Murahashi, “線材の連続ダイレステーパー加工法の開発”, Journal of
JSTP, Vol.31, No355, pp.978-983 (1990-8).
[4] R. Fortunier, H. Sassoulas, F. Montheillet, “A thermo-mechanical analysis of stability in dieless wire drawing”, Int.J.Mech.Sci, Vol.39, No5, pp.615-627 (1997).
[5] P. Tiernan, M. T. Hillery, “Dieless wire drawing-an experimental and numerical analysis”, Journal of Materials Processing Technology, Vol.155-156, pp.1178-1183 (2004).
[6] M. D. Naughton, P. Tiernan, “Requirements of a dieless wire drawing system”, Journal of Materials Processing Technology, Vol.191, pp.310-213, (2007).
[7] M. D. Naughton, P. Tiernan, R. Carolan, P. Tiernan, “Computer controlled system for dieless drawing of tool steel bar”, Journal of Materials Processing Technology, Vol.209, pp.3335-3342 (2009).
[8] M. D. Naughton, P. Tiernan, “An Experimental Approach to Continuous Dieless Wire Drawing (Variant A) Using ELI T-6Al-V Alloy”, Journal of Engineering Materials Technology, Vol.131, pp.021005-1─021005-10 (2009).
[9] M. Kaltenbrunner, G. Liedl, A. Kratky, R.Bielak, Dieless “Lawd-Laser Assisted Wire Drawing”, Laser Assisted Net Shape Engineering 4, pp.1175-1181 (2004).
[10] You Huh, Bo Keun Ha, Jong Sung Kimi, “Dieless drawing steel wires using a dielectric heating method and modeling the process dynamics”, Journal of Materials Processing Technology, Vol.210, pp.1702-1708 (2010).
[11] 關口秀夫, “ダイレス引抜き加工法”, Journal of JSTP, Vol.17, No.180, pp.67-71 (1976)。
[12] Z. T. Wang, G.F. Luan, G.R. Bai, “Study of the deformation velocity field and drawing force during the dieless drawing of tube”, Journal of Materials Processing Technology, Vol.94, pp.73-77 (1999).
[13] Z.T. Wang, S.H. Zhang, Y. Xu, G.F. Luan, G.R. Bai, “Experiment study on the variation of wall thickness during dieless drawing of stainless steel tube”, Journal of Materials Processing Technology, Vol.120, pp.90-93 (2002).
[14] K. Manabe, T. Furushima, T. Sakai, “Fabrication of Superplastic Microtubes Using Dieless Drawing Process”, Journal of JSTP, Vol.47, No.548, pp.870-874 (2006).
[15] T. Furushima, K. Manabe, “Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes”, Journal of Materials Processing Technology, Vol.191, pp.59-63 (2007).
[16] T. Furushima, K. Manabe, “Finite Element Simulation with Coupled Thermo-mechanical Analysis of Superplastic Dieless Tube Drawing Considering Strain Rate Sensitivity”, Journal of the JSTP Vol.48, pp.51-55 (2007).
[17] T. Furushima, K. Manabe, “FE analysis of size effect on deformation and heat transfer behavior in microtube dieless drawing”, Journal of Materials Processing Technology, Vol.201, pp.123-127 (2008).
[18] T. Furushima, Y. Noda, K. Manabe, “Effect of drawing speed and heating band on deformation limit in dieless tube-drawing”, 日本機械學會第17回機械材料‧材料加工技術講演會CD-ROM論文集, No.09-28 (2009).
[19] T. Furushima, T. Ikeda, K. Manabe, “Effect of material properties on deformation behavior in dieless drawing”, 日本機械學會第18回機械材料‧材料加工技術講演會CD-ROM論文集, No.10-29 (2010).
[20] T. Furushima, K. Manabe, “Dieless drawing process of extruded non-circular aluminum alloy tubes with double hollow section”, Journal of Japan Institute of Light Metals, Vol. 57, No.8, pp.351–356 (2007).
[21] T. Furushima, S. Hirose, K. Manabe, “Effective Temperature Distribution and Drawing Speed Control for Stable Dieless Drawing Process Metal Tube”, Journal of Solid Mechanics and Materials Engineering, Vol.3, No.2, pp.236–246 (2009).
[22] T. Furushima, N. Hung, K. Manabe, O. Sasaki, “Fabrication of Metal Bellows by Dieless Compression Technique”, 塑性加工連合演講會, Vol.61, pp.87–88 (2010).
[23] “無模拉製成形雛形機之設計與製作”,郭宗育,中山大學機械與機電工程所碩士論文,2011年6月。
[24] “高週波加熱機規格”,介鴻興科技有限公司,服務網址http://www.heaters.ttnet.net/。
[25] “高週波工業應用技術”,高橋勘次郎,復漢出版社,台北,1978。
[26] “紅外線測溫器原理”,南樺電子報第66期,2006年3月。
[27] “各種材料放射率表”,上海中炫電子技術文章,服務網址http://www.zx17.net.cn/zx17_Article_13364.html。
[28] “三爪夾頭規格”,千島精密儀器,操作說明書。
[29] T. Furushimae, K. Manabe, “Fabrication of AZ31 Magnesium Alloy Fine Tubes by Dieless Drawing Process”, Journal of JSTP, Vol.51, No.597, pp.990-992.
[30] “不鏽鋼的種類和特點”,科普簡報網,服務網址http://www.kepujianbao.com/fenlei/engineering-materials/39/714.html
[31] T. Furushimae, K. Manabe, “Experimental study on multi-pass dieless drawing process of superplastic Zn-22% Al alloy microtube” , Journal of Materials Processing Technology, Vol.187-188, pp.236-240 (2007).
[32] “沃斯田鐵系不鏽鋼高溫變形阻抗之研究”,陳威廷,國立台灣科技大學機械工程學系碩士論文,2006年6月。
[33] Incropera, “Heat Transfer”, Wiley Pte Ltd, 5 th, pp.70-73.
[34] “ステンレス鋼便覧”,ステンレス協会編,東京都日刊工業新聞社, 1995[民84]。
[35] “阻抗式加熱機”,介鴻興科技有限公司,服務網址:http://www.heaters.ttnet.net/。
[36] “Depicts a traditional PID controller”, SilverStar at en. wikipedia, http://zh.wikipedia.org/wiki/File:Pid-feedback-nct-int-correct.png.
[37] “台達電PID溫度控制器說明”,台達電子工業股份有限公司,服務網址:http://www.delta.com.tw/ch/product/em/tech/tech_question.asp?act=2&lid=2&pid=3&cid=4。
[38] 橋爪伸,“金屬材料的塑性變形抵抗”,日本塑性加工學會,第五卷,第八號,pp.177-181。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code