Responsive image
博碩士論文 etd-0722113-124503 詳細資訊
Title page for etd-0722113-124503
論文名稱
Title
具聚焦式反射閘極結構之彎曲平板波元件開發
Development of Flexural Plate-wave Device with a Focused Reflective Grating Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-27
繳交日期
Date of Submission
2013-08-22
關鍵字
Keywords
聚焦式反射閘極結構、微質量感測元件、體型微加工技術、彎曲平板波、插入損耗
focus-type reflective grating structure, insertion loss, microsensor, bulk micromachining, flexural plate-wave
統計
Statistics
本論文已被瀏覽 5690 次,被下載 0
The thesis/dissertation has been browsed 5690 times, has been downloaded 0 times.
中文摘要
目前聲波感測器(Acoustic Sensor)已被廣泛應用於微質量感測上,包含了表面聲波(Surface Acoustic Wave, SAW)感測器、剪應力(Thickness Shear Mode, TSM)震盪器、剪力水平板波(Shear Horizontal Acoustic Plate Mode, SH-APM)感測器以及彎曲平板波(Flexural Plate Wave, FPW)感測器,傳統彎曲平板波元件具有高質量靈敏度、低傳播速度與低操作頻率等優點,而其主要之缺點為高插入損耗(Insertion Loss, IL>-50 dB)及製程良率低。

本論文首度引入聚焦式反射閘極結構(Focus-type Reflective Grating Structure)於FPW元件設計中,以改善傳統FPW元件之高插入損耗特性。本論文所採用的製程技術主要是體型微加工製程(Bulk Micromachining),製程步驟包含七次薄膜沉積與五次黃光微影製程。

本論文所開發的FPW元件共分為以下三種不同的設計:(i) 25對聚焦式指叉電極(IDT),但無反射閘極設計;(ii) 25對平行式IDT以及10對平行式反射閘極;(iii) 25對聚焦式IDT以及10對聚焦式反射閘極。由實驗結果顯示,以上三種設計之FPW元件插入損耗分別為:-41.88 dB、-46.34 dB以及-37.41 dB;故可證明平行式反射閘極結構無法有效降低FPW元件之插入損耗,而聚焦式反射閘極結構則可有效降低元件插入損耗達10.67%。

最後,本論文以聚焦式反射閘極結構設計之彎曲平板波元件進行微質量感測,當元件背部矽空腔依序蒸鍍五層厚度為1000 Å之鋁金屬,可量得其平均質量感測靈敏度與感測線性度分別為60.16 cm2/g與98.65%,故相當適合應用於生醫感測微系統。
Abstract
Acoustic micro-sensors have already been applied in mass sensing including surface acoustic wave (SAW), thickness shear mode (TSM), shear horizontal acoustic plate mode (SH-APM) and flexural plate wave (FPW). The conventional FPW device has advantages of high mass sensitivity, low phase velocity and low operation frequency. However, conventional FPW devices usually present a high insertion loss and low fabrication yield.

In order to improve the insertion loss of conventional FPW devices, this thesis employs focus-type reflective grating structure at FPW device presented by utilizing bulk micromachining technique. The main fabrication steps include seven thin-film deposition and five photolithography processes.

This thesis develops three kinds of difference FPW devices: (i) focus-type 25-pair IDTs without reflective grating structure. (ii) parallel-type 25-pair IDTs with 10-pair reflective grating structure. (ii) focus-type 25-pair IDTs with 10-pair reflective grating structure. Experiment results demonstrate above three different types of FPW device -41.88 dB, -46.34 dB and -37.41 dB of insertion loss, respectively. The insertion loss can be improved about 10.67% by adopting focus reflective grating structure than parallel design.

Finally, when the five aluminum membranes(1000 Å) were evaporated on the cavity of the back side device, the mass sensitivity and linearity of proposed FPW device are 60.16 cm2/g and 98.65%, respectively.
目次 Table of Contents
中文審定書.......................................................................................i
英文審定書.......................................................................................ii
誌謝.................................................................................................iii
摘要.................................................................................................iv
Abstract............................................................................................v
目錄.................................................................................................vii
圖目錄.............................................................................................ix
表目錄.............................................................................................xii
第一章 緒論.................................................................................1
1-1 前言 ......................................................................................1
1-2 研究動機與論文架構.................................................................3
第二章 FPW感測器與IDT理論.......................................................4
2-1 聲波元件簡介............................................................................4
2-1-1 在彈性介質中的波傳行為........................................................4
2-1-2 聲波感測器種類與比較............................................................6
2-2 壓電效應簡介與壓電薄膜選擇....................................................14
2-2-1 壓電效應.................................................................................14
2-2-2 壓電薄膜比較..........................................................................16
2-2-3 氧化鋅壓電薄膜晶格結構與特性..............................................17
2-3 氧化鋅壓電薄膜沉積方法與特性分析.........................................18
2-3-1 氧化鋅壓電薄膜沉積方法........................................................18
2-3-2 氧化鋅壓電薄膜沉積原理........................................................19
2-3-3 反應性射頻磁控濺鍍原理.......................................................21
2-3-4 X光繞射分析..........................................................................23
2-3-5 掃描式電子顯微鏡分析............................................................25
2-4 金屬指叉轉換器之等效電路分析.................................................25
2-5 反射閘極結構理論......................................................................29
2-5-1 反射閘極週期..........................................................................31
2-5-2 反射閘極對數之原理...............................................................31
2-5-3 反射閘極與IDT之間距離之關係...............................................31
2-6 FPW質量感測之理論推導..........................................................33
2-6-1 FPW無液體質量負載下之相速度理論推導................................33
2-6-2 FPW於非黏滯性液體質量負載下之平板波相速度、質量感測 靈敏度以及頻率飄移量之理論推導............35
2-6-3 FPW於黏滯性液體質量負載下相速度之理論推導.......................37
第三章 具聚焦式反射閘極結構之FPW元件設計與製作.....................38
3-1 具聚焦式反射閘極結構之FPW元件光罩佈局設計..........................38
3-2 具聚焦式反射閘極結構之FPW元件製作........................................43
第四章 實驗結果與討論...................................................................51
4-1 氧化鋅壓電薄膜之材料特性..........................................................51
4-2 FPW元件探針式量測平台簡介......................................................54
4-3 FPW元件特性量測結果與分析.......................................................56
4-3-1 矽基板之KOH蝕刻時間對FPW元件中心頻率的影饗....................56
4-3-2 聚焦式反射閘極結構對FPW元件特性之影響...............................58
4-3-3 具聚焦式與平行式反射結構設計之FPW元件特性比較.................60
4-4 具聚焦式反射閘極結構之FPW微質量感測器特性分析....................62
第五章 結論與未來展望....................................................................63
5-1 結論 ..........................................................................................63
5-2 未來展望......................................................................................65
參考文獻..........................................................................................66
參考文獻 References
[1] 微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心,
2003。
[2] L. Rayleigh, “On waves propagated along the plane surface of an elastic
solid,” London Mathematical Society 17, 4-11 (1885).
[3] D.S. Ballantine and D. Stephen, “Acoustic wave sensor: theory, design, and
physico-chemical applications,” San Diego, Academic Press, Inc. (1997).
[4] R.W. Cernosek, “An Overview of Acoustic Wave Devices for chemical &
biological sensing, Biological Detection, and Materials Characterization,”
Solid-State Sensor Lecture, Auburn University, Auburn, AL (2002).
[5] D.W. Galipeau, P.R. Story, K.A. Vetelino and R.D. Mileham, “Surface
acoustic wave microsensors and applications,” Smart Materials and
Structures 6, 658-667 (1997).
[6] J.W. Gardner, V.K. Varadan and O.O. Awadelkarim, “Microsensors MEMS
and smart devices,” John Wiely & Sons, Inc., New York (2001).
[7] 余嘉銘,壓電彎曲平板波生物感測器,國立中正大學電機工程研究所碩士
論文 (2003)。
[8] M.J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics.
36, 7-14 (1998).
[9] M.E. Motamedi and R.M. White, “Acoustic sensor in semiconductor sensor,”
John Wiely & Sons, Inc., New York (1994).
[10] M.I. Rocha-Gaso, C.M. Iborra, A.M. Baides and A.A. Vives, “Surface
Generated Acoustic Wave Biosensors for the Detection of Pathogens,”
Sensors 9, 5740-5769 (2009).
[11] M.S. Weinberg, B.T. Cunningham and C.W. Clapp, “Modeling flexural plate
wave device,” J. Microelectromech. Syst. 9(3), 370-379 (2000).
[12] I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for
human IgE detection by MEMS and cystamine-based SAM technologies,”
Sens. Act. B: Chem. 132(1), 340-348 (2008).
[13] I.-Y. Huang, M.-C. Lee, C.-H Hsu and C.-C. Wang, “Development of a
flexural plate-wave (FPW) immunoglobulin-E (IgE) allergy bio-sensing
microsystem,” Sens. Act. B: Chem. 162(1), 184-192 (2012).
[14] J.C. Pyun, H. Beutel, J.U. Meyer and H. H. Ruf, “Development of a
biosensor for E. coli based on a flexural plate wave (FPW) transducer,”
Biosens. Bioeletron. 13(7-8), 839-845 (1998).
[15] B.T. khuri-Yakub, J.G. Smits and T. Barbee, “Reactive magnetron sputtering
of ZnO,” J. Appl. Phys. 52(7), 4772-4774 (1981).
[16] Q.X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin
film bulk acoustic resonators and filters using ZnO and Lead Zirconium
Titanate thin films,” IEEE Trans Microw Theory Tech. 49(4), 769-778 (2001).
[17] Y.-H Hsu, J. Lin and W.C. Tang, “RF sputtered piezoelectric zinc oxide thin
film for transducer applications,” J. Mater. Sci:Mater. Electron. 19, 653-661
(2008).
[18] S.J. Kang, Y.H. Joung, D.H. Chang and K.W. Kim , “Piezoelectric and
optical properties of ZnO thin films deposited using various O2/(Ar+O2) gas
ratios,” J. Mater. Sci:Mater. Electron. 18, 647-653 (2007).
[19] 歐天凡,沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響,國立
中山大學電機工程研究所碩士論文 (2004)。
[20] Hong Xiao原著,羅正忠、張鼎張譯,「半導體製程技術導論」,學銘圖

[21] 汪建民主編,「材料分析」,中國材料科學學會
[22] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder and H.J.
Shaw, “Analysis of Interdigital Surface Wave Transducers by Use of
Equivalent Circuit Model,” IEEE Trans Microw Theory Tech. 17(11), 856-864
(1969).
[23] S.G. Joshi, B.D. Zaitsev and I.E. Kuznetsova, “Reflection of Plate Acoustic
Waves Produced by a Periodic Array of Mechanical Load Strips or
Grooves,” IEEE Trans. Ultras. Ferr. Freq. Contr. 49(12), 1730-1734 (2000).
[24] C.-Y Lin, I.-Y. Huang and J.-W. Lan, “Improvement of insertion loss and
quality factor of flexural plate-wave based alpha-fetoprotein biosensor using
groove-type reflective grating structures,” J. Micro/Nanolith. MEMS MOEMS
12(1), 013017-1~8 (2013).
[25] I.-Y. Huang, C.-Y. Lin and J.-W. Lan, “Improving thin film ZnO SAW device
insertion loss by grooved reflective grating structure,” J. Micro/Nanolith.
MEMS MOEMS 12(1), 013019-1~9 (2013).
[26] 林俊甫,雙埠表面聲波濾波器的模擬與量測,國立成功大學機械工程學
研究所碩士論文 (2003)。
[27] W.H. Haydl, B. Dischler and P. Hiesinger, “Multimode SAW Resonators-A
Method to Study the Optimum Resonator Design,” Proc. 1976 IEEE
Ultrason. 2, 105-114 (1975).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.222.118.194
論文開放下載的時間是 校外不公開

Your IP address is 44.222.118.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code