Responsive image
博碩士論文 etd-0722113-131253 詳細資訊
Title page for etd-0722113-131253
論文名稱
Title
偶氮苯/二氧化矽複合材料的合成與鑑定及其光學應用
Synthesis and characterization of azobenzene / silica composites for optical applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-01
繳交日期
Date of Submission
2013-08-22
關鍵字
Keywords
光學儲存、甲基紅、繞射效率、偶氮苯、雷射波長
laser wavelength, diffraction efficiency, azobenzene, methyl red, optical storage
統計
Statistics
本論文已被瀏覽 5705 次,被下載 227
The thesis/dissertation has been browsed 5705 times, has been downloaded 227 times.
中文摘要
本研究利用溶膠-凝膠法,製備具有重複讀寫的偶氮苯儲存材料,應用於光學性質上。藉由雷射的同調性,使偶氮苯有E Form與Z Form之間的構形轉變,可進行重複讀寫。因為溶膠-凝膠法可以大量生產,所以具有低成本的特性。在基材方面,有機基材的熱膨脹性大,無機基材的機械性質佳,所以無機機材比有機基材的材料更適合溶膠-凝膠法。所以選用3-氨基丙基三乙氧基硅烷(APTES)與2-{[4-(二甲氨基)苯基]偶氮基}苯甲酸(Methyl Red)做為前驅物,由於無機的矽與有機的偶氮苯會產生相分離的情形,但是藉由系統內的離子鍵形成減少相分離的情形。由於離子鍵比氫鍵的作用力強,相對提高材料的熱穩定性和長時間保存。

本研究利用不同雷射波長,討論偶氮苯光學儲存材料其繞射效率與記錄雷射光波長之間的關連性。並且進一步,針對雷射波長532 nm、450 nm與406 nm做光學性質的研究。得知雷射波長532 nm有較佳的靈敏性,記錄時間短,反應快;雷射波長450 nm所出現的高階繞射光數量較少與光強度較弱,因此在資料可以完整讀取。
Abstract
In this study, the optical strong materials were prepared by sol-gel process. A method employs 3 - aminopropyl triethoxysilane (APTES) and 2 - {[4 - (dimethylamino) phenyl] azo} benzoic acid (Methyl Red) as the precursors. The ionic interaction reduce the phase separation between the inorganic silicon substrate and the organic azobenzene. The characteristics of the ion interaction compose a unique chemical, increasing the thermal stability and long term preservation.

In this study, diffraction efficiencies using various laser wavelengths, such as 532 nm、 450 nm and 406 nm, have been thoroughly studied. It is found that the recording wavelength of 532 nm provided a better performance, since the diffraction efficiency was higher than the other s. On the other hand, the recording wavelength of 450 nm did not generate high order diffractions. This makes it desirable to reconstruct the object wave with low distortion and low noises.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 6
第二章 文獻回顧與理論基礎 9
2.1 文獻回顧 9
2.2 偶氮苯光柵形成原理 11
2.3 光致變(photochromism)系統簡介 11
2.4 光致變材料之機制 12
2.5 光致變材料的分類 13
2.6 偶氮苯化合物之光異構化 14
2.7 全像術之簡介 15
2.8 繞射效率之計算方法 17
2.9 平面光柵與體積光柵(plane and volume grating) 17
2.10 溶膠凝膠法簡介 19
第三章 試片製程 23
3.1 實驗藥品 23
3.2 製程步驟 24
第四章 材料性質檢測 27
4.1 實驗儀器 27
4.2 結果與討論 28
4.2.1 甲基紅之 E-Z 構形改變之檢測 28
4.2.2 矽基材與甲基紅之間的離子鍵檢測 29
4.2.3 矽基材之水解縮合檢測 30
4.2.4 矽基材之孔洞特性檢測 32
第五章 光學性質檢測 33
5.1 光柵製作之光學架構 33
5.2 資料讀取之光學架構 35
5.3 結果與討論 37
5.3.1 不同雷射記錄波長對試片A之繞射效率影響 37
5.3.2 不同雷射光強度(532 nm)對試片A之繞射效率影響 40
5.3.3 波長 532 nm對試片B之繞射光強度影響 42
5.3.4 波長 450 nm 對試片B之繞射光強度影響 44
5.3.5 波長 406 nm 對試片B之繞射光強度影響 46
第六章 結論 48
參考文獻 50
參考文獻 References
[1] G. Cappelletti, et al., "Aged titania nanoparticles: the simultaneous control of local and long-range properties," The Journal of Physical Chemistry B, vol. 109, pp. 4448-4454, 2005.
[2] F. K. Bruder, et al., "From the Surface to Volume: Concepts for the Next Generation of Optical–Holographic Data‐Storage Materials," Angewandte Chemie International Edition, vol. 50, pp. 4552-4573, 2011.
[3] S.-H. Lin, et al., "Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm," Journal of Optics A: Pure and Applied Optics, vol. 11, p. 024012, 2009.
[4] W. R. Graver, et al., "Phase holograms formed by silver halide (sensitized) gelatin processing," Applied optics, vol. 19, pp. 1529-1536, 1980.
[5] Z. Ren, et al., "Air impurity in holographic photonic crystals made with dichromated gelatin," in Photonics Asia 2010, 2010, pp. 78482H-78482H-7.
[6] F. Zhao, et al., "Temperature dependence of light‐induced scattering in a Ce: Fe: LiNbO3 photorefractive crystal," Optical Engineering, vol. 35, pp. 1985-1992, 1996.
[7] H. Lin and P. W. de Oliveira, "Ionic Liquids in Photopolymerizable Holographic Materials."
[8] W. Colburn and K. Haines, "Volume hologram formation in photopolymer materials," Applied Optics, vol. 10, pp. 1636-1641, 1971.
[9] T. L. Metroke, et al., "Application of laser ablation technique for removal of chemically inert organically modified silicate coatings," Progress in organic coatings, vol. 46, pp. 250-258, 2003.
[10] C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing: Academic Pr, 1990.
[11] A. Natansohn, et al., "Azo polymers for reversible optical storage. 6. Poly [4-[2-(methacryloyloxy) ethyl] azobenzene]," Macromolecules, vol. 28, pp. 4179-4183, 1995.
[12] Y. M. Chang, et al., "Photopolymerization of aromatic acrylate containing phosphine oxide backbone and its application to holographic recording," Optical Materials, vol. 30, pp. 662-668, 2007.
[13] C.-Y. Kuo, et al., "A facile sol–gel synthesis of crack-free photopolymerizable silica for holographic recording," Journal of Non-Crystalline Solids, vol. 358, pp. 735-740, 2012.
[14] S. Liu, et al., "High intensity response of photopolymer materials for holographic grating formation," Macromolecules, vol. 43, pp. 9462-9472, 2010.
[15] L. L. Hench and W. Vasconcelos, "Gel-silica science," Annual review of materials science, vol. 20, pp. 269-298, 1990.
[16] P. Cheben and M. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Applied Physics Letters, vol. 78, pp. 1490-1492, 2001.
[17] L. Carretero, et al., "Acrylamide-N, N'-methylenebisacrylamide silica glass holographic recording material," Optics Express, vol. 12, pp. 1780-1787, 2004.
[18] A. Murciano, et al., "Analysis of nonuniform transmission gratings recorded in photopolymerizable silica glass materials," Journal of Applied Physics, vol. 104, pp. 063109-063109-10, 2008.
[19] W. Que, et al., "Azobenzene-containing small molecules organic–inorganic hybrid sol–gel materials for photonic applications," Applied Physics B, vol. 91, pp. 539-543, 2008.
[20] K. G. Yager and C. J. Barrett, "All-optical patterning of azo polymer films," Current opinion in solid state and materials science, vol. 5, pp. 487-494, 2001.
[21] A. Galvan-Gonzalez, et al., "Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment," JOSA B, vol. 17, pp. 1992-2000, 2000.
[22] N. Landraud, et al., "Near-field optical patterning on azo-hybrid sol–gel films," Applied physics letters, vol. 79, pp. 4562-4564, 2001.
[23] L. Kulikovsky, et al., "Phenomenology of Photoinduced Processes in the Ionic Sol− Gel-Based Azobenzene Materials," ACS applied materials & interfaces, vol. 1, pp. 1739-1746, 2009.
[24] O. Kulikovska, et al., "Smart Ionic Sol− Gel-Based Azobenzene Materials for Optical Generation of Microstructures," Chemistry of Materials, vol. 20, pp. 3528-3534, 2008.
[25] P. H. Rasmussen, et al., "A remarkably efficient azobenzene peptide for holographic information storage," Journal of the American Chemical Society, vol. 121, pp. 4738-4743, 1999.
[26] M. Serwadczak and S. Kucharski, "Photochromic Gratings in Sol-Gel Hybrid Materials Containing Cyanoazobenzene Chromophores," Journal of Sol-Gel Science and Technology, vol. 37, pp. 57-62, 2006.
[27] D. Wang, et al., "The photoinduced surface-relief-grating formation behavior of side-chain azo polymers with narrow< i> M</i>< sub> r</sub> distribution," Dyes and Pigments, vol. 82, pp. 286-292, 2009.
[28] E. Laizane, et al., "Optically Induced Surface Relief Gratings in Polymer Films Doped With Sulphonyl Group Containing Azobenzene," 2010.
[29] J. Gao, et al., "Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings," Chemistry of materials, vol. 19, pp. 14-17, 2007.
[30] T. Kawai, et al., "A Novel Photoresponsive π‐Conjugated Polymer Based on Diarylethene and its Photoswitching Effect in Electrical Conductivity," Advanced Materials, vol. 17, pp. 309-314, 2005.
[31] J. Sunamoto, et al., "Rate control by restricting mobility of substrate in specific reaction field. Negative photochromism of water-soluble spiropyran in AOT reversed micelles," Journal of the American Chemical Society, vol. 104, pp. 4904-4907, 1982.
[32] I. Khoo, et al., "Observation of orientational photorefractive effects in nematic liquid crystals," Optics letters, vol. 19, pp. 1723-1725, 1994.
[33] I. Khoo, "Holographic grating formation in dye-and fullerene C< sub> 60</sub>-doped nematic liquid-crystal film," Optics letters, vol. 20, pp. 2137-2139, 1995.
[34] O. Pekcan and E. Arda, "Latex film formation study by using photon reflection method," in Macromolecular Symposia, 2000, pp. 443-450.
[35] L. Frey, et al., "Analysis of gratings induced in azo-dye doped liquid crystals," Optical Materials, vol. 18, pp. 91-94, 2001.
[36] M. P. Givens, "Introduction to holography," Am. J. Phys, vol. 35, pp. 1056-1064, 1967.
[37] Y. N. Denisyuk, "Holography and its prospects (review)," Journal of Applied Spectroscopy, vol. 33, pp. 901-915, 1980.
[38] P. Hariharan, Optical Holography: Principles, techniques and applications vol. 20: Cambridge University Press, 1996.
[39] S.-M. Teng, "Synthesis, Microstructure, and Diffraction Efficiency of Photopolymerizable Silica for Optical Storage," 2012.
[40] R. Jain and R. C. Lind, "Degenerate four-wave mixing in semiconductor-doped glasses," JOSA, vol. 73, pp. 647-653, 1983.
[41] W. J. Gambogi Jr, et al., "Holographic transmission elements using improved photopolymer films," in San Diego,'91, San Diego, CA, 1991, pp. 256-267.
[42] M. A. Anderson, et al., "Titania and alumina ceramic membranes," Journal of membrane science, vol. 39, pp. 243-258, 1988.
[43] J. Wen and G. L. Wilkes, "Organic/inorganic hybrid network materials by the sol-gel approach," Chemistry of Materials, vol. 8, pp. 1667-1681, 1996.
[44] M. M. Collinson, "Sol-gel strategies for the preparation of selective materials for chemical analysis," Critical Reviews in Analytical Chemistry, vol. 29, pp. 289-311, 1999.
[45] D. Barreca, et al., "How Does CuII Convert into CuI? An Unexpected Ring‐Mediated Single‐Electron Reduction," Chemistry-A European Journal, vol. 17, pp. 10864-10870, 2011.
[46] J. Li, et al., "Materials processing for lithium-ion batteries," Journal of Power Sources, vol. 196, pp. 2452-2460, 2011.
[47] G. S. Kumar, et al., "Chelating copolymers containing photosensitive functionalities. 3. Photochromism of cross-linked polymers," Macromolecules, vol. 18, pp. 1525-1530, 1985.
[48] O. Kulikovska, et al., "Supramolecular azobenzene-based materials for optical generation of microstructures," Chemistry of materials, vol. 19, pp. 3343-3348, 2007.
[49] K. Vincent and T. JunáHuang, "Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing," Journal of Materials Chemistry, vol. 17, pp. 4896-4901, 2007.
[50] R. PIEROTTI and J. ROUQUEROL, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity," 1985.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code