Responsive image
博碩士論文 etd-0722113-132104 詳細資訊
Title page for etd-0722113-132104
論文名稱
Title
運用微機電系統技術開發鈉/鈣/銨/氯多重離子微型感 測晶片
Development of a Multi-function Micro Chip for Detection of Sodium/ Calcium/Ammonium/Chlorine Ions Using MEMS Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-27
繳交日期
Date of Submission
2013-08-22
關鍵字
Keywords
延伸式閘極場效電晶體、線性度、微機電系統、離子感測薄膜、靈敏度
linearity, ion selective membrane, extended-gate field-effect transistor, sensitivity, micro-electromechanical system
統計
Statistics
本論文已被瀏覽 5705 次,被下載 0
The thesis/dissertation has been browsed 5705 times, has been downloaded 0 times.
中文摘要
有鑑於國人工作時間較長,習慣性熬夜與經常性外食的生活型態,長時間下來
身體也隨之出現警訊。人體血液中之鈉、鈣、銨、氯等離子濃度除了直接反應人體
的健康狀況,亦可由其觀察得知各種疾病之症候。故人體血液中之鈉、鈣、銨、氯
離子之濃度可做為人體健康指標上之重要參數。
本論文利用微機電系統技術製作一種延伸式閘極場效電晶體,並在延伸式閘極
場效電晶體的閘極電極上塗佈不同的離子選擇薄膜,透過其離子選擇薄膜與待測離
子產生吸附作用,開發出可即時偵測鈉、鈣、銨、氯等離子濃度之多重離子感測器。
本論文利用四道黃光微影製程與兩道薄膜沉積製程製作出延伸式閘極場效應電晶體,
另外使用兩道黃光微影製程與兩道薄膜沉積製程製作出感測器之封裝晶片,最後,
本論文將探討通道寬長比、通道形狀、離子感測薄膜之感測特性與感測薄膜之選擇
性,進而取得最佳特性表現之元件尺寸設計值。
本論文所開發出之微型多重離子感測器尺寸為 11 mm×13 mm×0.5 mm,閘極感
測面積為 1 mm×1 mm。根據量測結果顯示,於0.1mM~0.1M之感測離子濃
度範圍下,鈉離子感測靈敏度與線性度最高分別可達 58 mV/pNa 與 99%,鈣離子感
測靈敏度與線性度最高分別可達 40 mV/pCa 與 93%,銨離子感測靈敏度與線性度最
高分別可達 41 mV/pN H 4 與 98.4%,氯離子感測靈敏度與線性度最高分別可達 58
mV/pCl 與 96%。
Abstract
As working time increases for most people, dining out and staying up late is
inevitable, resulting in bad health condition. The concentration of sodium, calcium,
ammonium and chloride ion in human blood not only respond directly to health condition,
but can also obtain symptoms of different disease by observing it. This shows that the concentrations of sodium, calcium, ammonium and chloride ion in human blood are an important index of health. In this thesis, an extended-gate field-transistor (EGFET) is developed utilizing micro-electromechanical system (MEMS) technology. Then the gate metal electrodes of the EGFETs are coated with ion selective membranes (ISMs) which can adsorb and measure the appointed ions to develop the sodium, calcium, ammonium and chloride ion microsensors in one chip. The main processing steps of the EGFET in this study involve four photolithographic and two thin-film deposition processes, as well as two photolithographic and two thin-film deposition processes to fabricate the package chip.
The influence of the channel’s width/length ratio, the design of channel’s figure, the sensitivity of the applying sensitive membrane and selectivity of the sensitive membrane were investigated, after that the best performance of the channel’s width/length ratio and channel’s figure design could be obtained. he chip size of the extended gate field effect transistor microsensor is 11 mm×13 mm×0.5 mm and the sensing area is 1 mm×1 mm. Based on the measurement results of the ion sensors, the sensitivity and sensing linearity of the sodium ion microsensor are 58 mV/pNa and 99%, respectively, as the sensing ion concentration varies from0.1mM~0.1M . At the same situations, the calcium ion (40 mV/pCa and 93%), the ammonium ion (41 mV/pNH 4 and 98.4%) and the chloride ion (58 mV/pCl and 96%) were also presented in this paper.
目次 Table of Contents
V

目錄
摘要.................................................................................................................................I
Abstract..........................................................................................................................II
致謝............................................................................................................................. .IV
目錄...............................................................................................................................V
圖目錄.......................................................................................................................VII
表目錄...........................................................................................................................XIII
第一章 緒論 ..................................................................................................................... 1
1-1 前言 .................................................................................................................... 1
1-2 研究動機 ............................................................................................................ 2
1-3 實驗方法及論文架構 ........................................................................................ 4
第二章 離子感測器之原理介紹 ..................................................................................... 5
2-1 離子感測器種類 ................................................................................................. 5
2-1-1 離子選擇電極 ......................................................................................... 5
2-1-2 離子感測場效電晶體 ............................................................................. 6
2-1-3 延伸式閘極感測場效電晶體 ................................................................. 8
2-2 延伸式閘極感測場效電晶體原理介紹 ............................................................ 9
2-2-1 吸附鍵結模型 ....................................................................................... 10
2-2-2 延伸式閘極感測場效電晶體工作原理 ............................................... 11
第三章 離子感測器之設計與製作 ............................................................................. 15
3-1 延伸式閘極感測場效電晶體結構與光罩佈局設計 ...................................... 15
3-2 延伸式閘極感測場效電晶體與封裝晶片上蓋之製程整合設計 .................. 20
3-2-2 製程步驟與製程參數 ........................................................................... 23
3-2-3 延伸式閘極場效電晶體製程步驟說明 ............................................... 29
3-2-4 封裝上蓋之製程步驟說明 ................................................................... 32 VI

3-3 鈉離子感測薄膜配製 ...................................................................................... 34
3-3-1 實驗藥品及材料 ................................................................................... 35
3-4 鈣離子感測薄膜配製 ...................................................................................... 36
3-4-1 實驗藥品及材料 ................................................................................... 37
3-5 氯離子感測薄膜配製 .............................................................................. 38
3-5-1 實驗藥品及材料 ................................................................................... 38
3-5-2 感測薄膜調配 ....................................................................................... 39
3-6 銨離子感測薄膜配製 ...................................................................................... 39
3-6-1 實驗藥品及材料 ................................................................................... 40
3-6-2 感測薄膜調配 ....................................................................................... 40
第四章 結果與討論 ....................................................................................................... 42
4-1 延伸式閘極場效電晶體量測分析 .................................................................. 43
4-2 離子感測器之量測分析 .................................................................................. 46
4-3 鈉離子感測靈敏度及線性度分析 .................................................................. 47
4-3-1 鈉離子感測器之干擾離子選擇比 ....................................................... 55
4-4 鈣離子感測靈敏度及線性度分析 .................................................................. 57
4-4-1 鈣離子感測器之干擾離子選擇比 ....................................................... 66
4-5 銨離子感測靈敏度及線性度分析 .................................................................. 68
4-5-1 銨離子感測器之干擾離子選擇比 ....................................................... 77
4-6 氯離子感測靈敏度及線性度分析 .................................................................. 79
4-6-1 氯離子感測器之干擾離子選擇比 ....................................................... 88
第五章 結論與未來展望 ............................................................................................... 91
5-1 結論 .................................................................................................................. 91
5-2 未來展望 .......................................................................................................... 92
參考文獻............................................................................................................................ 93 VII

圖目錄

圖 2-1 離子選擇電極感測示意圖 ..................................................................................... 5
圖 2-2 MOSFET 結構示意圖 ............................................................................................. 7
圖 2-3 ISFET 結構示意圖 ................................................................................................... 7
圖 2-4 伸式離子感測場效電晶體之結構圖 ..................................................................... 8
圖 2-5
DS DS
I V 特性曲線 .............................................................................................. 14
圖 2-6
DS GS
I V 輸出曲線 .............................................................................................. 14
圖 3-1 電晶體通道形狀與寬長比設計(a)直線型 W/L=40
; (b)直線型 W/L=100 ; (c)圓型 W/L=40 ; (d)圓型
W/L=100 .............................................................................................................. 16
圖 3-2 延伸式閘極場效電晶體光罩#0 示意圖 .............................................................. 17
圖 3-3 延伸式閘極場效電晶體光罩#1 示意圖 .............................................................. 17
圖 3-4 延伸式閘極場效電晶體光罩#2 示意圖 .............................................................. 18
圖 3-5 延伸式閘極場效電晶體光罩#3 示意圖 .............................................................. 18
圖 3-6 延伸式閘極場效電晶體之完整光罩佈局圖 ....................................................... 19
圖 3-7 封裝晶片上蓋光罩#a ........................................................................................... 19
圖 3-8 多重離子感測器結構示意圖 ............................................................................... 20
圖 3-9 延伸式閘極場效電晶體之元件製作流程圖: (a)蝕
刻矽基板定義對準圖型(光罩#0);(b)成長阻擋氧化
層防止離子佈值穿透;(c)蝕刻氧化層定義離子佈值
區圖型(光罩 #1)並保留一薄氧化層降低離子佈值所
造成之表面破壞;(d)進行熱退火且蝕刻去除所有阻
擋氧化層;(e)成長閘極氧化層;(f)蝕刻氧化層定義 VIII


金屬接觸窗圖型(光罩#2);(g)沉積鉻/金金屬層;
(h)蝕刻金屬定義主結構圖型(光罩#3)。 .......................................................... 21
圖 3-10 封裝晶片上蓋元件製作流程圖(i)對矽基板 RCA 清
洗;(j)成長氧化層;(k)成長氮化矽;(l)以 RIE 對
正面氮化矽進行蝕刻;(m)以 BOE 對正面氧化層
進行蝕刻;(n)以 RIE 對背面氮化矽進行蝕刻;(o
)以 BOE 對背面氧化層進行蝕刻;(p)以 KOH 蝕
刻矽基板。 .......................................................................................................... 22
圖 3-11 微型離子感測器製作流程 ................................................................................. 23
圖 3-12 鈉離子選擇薄膜 Sodium Ionophore X 結構圖 ............................................... 34
圖 3-13 陰電性添加劑 K-TClPB 結構圖 ........................................................................ 34
圖 3-14 鈉離子選擇薄膜 ETH129 ................................................................................. 36
圖 3-15 銨離子選擇物 TD19C6 化學結構圖 ................................................................. 40
圖 4-1 (a)延伸式閘極場效電晶體晶片; (b)封裝上蓋晶片 ......................................... 42
圖 4-2 (a)利用 EPOXY 封裝之延伸式閘極場效電晶體晶
片; (b)完成拉線封裝之感 ................................................................................... 42
圖 4-3 方形源、汲極之閘極漏電流曲線圖(a)通道寬長比 4
0 (b)通道寬長比 100 ........................................................................................... 43
圖 4-4 圓形源、汲極之閘極漏電流曲線圖(a)通道寬長比 4
0 (b)通道寬長比 100 ........................................................................................... 43
圖 4-5 方形源、汲極之電晶體 V D -I D 特性曲線圖(a)通道寬
長比 40 ; (b)通道寬長比 100 ................................................................................ 45
圖 4-6 圓形源、汲極之電晶體 V D -I D 特性曲線圖(a)通道寬
長比 40 ; (b)通道寬長比 100 .............................................................................. 45 IX


圖 4-7 微型離子感測器量測架構圖 ............................................................................. 46
圖 4-8 矩形通道寬長比 40 量測 pNa 4~ pNa 1:(a)I D -V G
曲線圖;(b)I D -V G 放大圖 .................................................................................. 47
圖 4-9 矩形通道寬長比 40 量測 pNa 4~ pNa 1 之線性度 ........................................... 48
圖 4-10 矩形通道寬長比 100 量測 pNa 4~pNa 1:(a)I D -V G
曲線圖;(b)I D -V G 放大圖 ................................................................................. 49
圖 4-11 矩形通道寬長比 100 量測 pNa 4~ pNa 1 之線性度 ......................................... 50
圖 4-12 圓形通道寬長比 40 量測 pNa 4~pNa 1: (a)I D -V G
曲線圖;(b)I D -V G 放大圖 ................................................................................. 51
圖 4-13 圓形通道寬長比 40 量測 pNa 4~ pNa 1 之線性度 ........................................... 52
圖 4-14 圓形通道寬長比 100 量測 pNa 4~pNa 1: (a)I D -V G
曲線圖; (b)I D -V G 放大圖 .................................................................................... 53
圖 4-15 圓形通道寬長比 100 量測 pNa 4~ pNa 1 之線性度 ......................................... 54
圖 4-16 氯化鈣溶液,圓形通道寬長比 100 量測 pCa 2 之
I D -V G 曲線圖 ....................................................................................................... 55
圖 4-17 氯化鉀溶液,圓形通道寬長比 100 量測 pK 2 之
I D -V G 曲線圖 ....................................................................................................... 56
圖 4-18 氯化銨溶液,圓形通道寬長比 100 量測 p
4
NH 2
之 I D -V G 曲線圖 .................................................................................................. 56
圖 4-19 鹽酸溶液,圓形通道寬長比 100 量測 pCl 2 之 I D -V G
曲線圖 ................................................................................................................. 56
圖 4-20 矩形通道寬長比 40 量測 pCa 4~ pCa 1:(a)I D -V G 曲
線圖;(b)I D -V G 放大圖 ....................................................................................... 58
圖 4-21 圓形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 59 X

圖 4-22 矩形通道寬長比 100 量測 pCa 4~pCa 1:(a)I D -V G
曲線圖;(b)I D -V G 放大圖 .................................................................................. 60
圖 4-23 矩形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 61
圖 4-24 圓形通道寬長比 40 量測 pCa 4~pCa 1:(a)I D -V G
曲線圖;(b)I D -V G 放大圖 .................................................................................. 62
圖 4-25 圓形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 63
圖 4-26 圓形通道寬長比 100 量測 pCa 4~pCa 1:(a)I D -V G
曲線圖;(b)I D -V G 放大圖 .................................................................................. 64
圖 4-27 圓形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 65
圖 4-28 氯化鈉溶液,圓形通道寬長比 100 量測 pNa 2 之
I D -V G 曲線圖 ....................................................................................................... 66
圖 4-29 氯化鉀溶液,圓形通道寬長比 100 量測 pK 2 之
I D -V G 曲線圖 ....................................................................................................... 67
圖 4-30 氯化銨溶液,圓形通道寬長比 100 量測 p
4
NH 2
之 I D -V G 曲線圖 .................................................................................................. 67
圖 4-31 鹽酸溶液,圓形通道寬長比 100 量測 pCl 2 之
I D -V G 曲線圖 ....................................................................................................... 67
圖 4-32 矩形通道寬長比 40 量測 p
4
NH 5 ~ p
4
NH 1:
(a)I D -V G 曲線圖;(b)I D -V G 放大圖 .................................................................... 69
圖 4-33 圓形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 70
圖 4-34 矩形通道寬長比 100 量測 p
4
NH 5~ p
4
NH 1:
(a)I D -V G 曲線圖;(b)I D -V G 放大圖 .................................................................... 71
圖 4-35 圓形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 72
圖 4-36 圓形通道寬長比 40 量測 p
4
NH 5~ p
4
NH 1: XI

(a)I D -V G 曲線圖;(b)I D -V G 放大圖 .................................................................... 73
圖 4-37 圓形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 74
圖 4-38 圓形通道寬長比 100 量測 p
4
NH 5~ p
4
NH 1:(a)I D -V G
曲線圖;(b)I D -V G 放大圖 ................................................................................. 75
圖 4-39 圓形通道寬長比 100 量測 pCa 4~ pCa 1 之線性度 ......................................... 76
圖 4-40 氯化鈉溶液,圓形通道寬長比 100 量測 pNa 2 之 I D -V G
曲線圖 ................................................................................................................ 77
圖 4-41 氯化鉀溶液,圓形通道寬長比 100 量測 pK 2 之 I D -V G
曲線圖 ................................................................................................................. 78
圖 4-42 氯化鈣溶液,圓形通道寬長比 100 量測 pCa 2 之 I D -V G
曲線圖 .................................................................................................................. 78
圖 4-43 鹽酸溶液,圓形通道寬長比 100 量測 pCl 2 之 I D -V G
曲線圖 .................................................................................................................. 78
圖 4-44 矩形通道寬長比 40 量測 pCl 4~ pCl 1:(a)I D -V G 曲線
圖;(b)I D -V G 放大圖 ......................................................................................... 80
圖 4-45 圓形通道寬長比 100 量測 pCl 4~ pCl 1 之線性度........................................... 81
圖 4-46 矩形通道寬長比 100 量測 pCl 4~pCl 1:(a)I D -V G 曲線
圖;(b)I D -V G 放大圖 .......................................................................................... 82
圖 4-47 圓形通道寬長比 100 量測 pCl 4~ pCl 1 之線性度........................................... 83
圖 4-48 圓形通道寬長比 40 量測 pCl 4~pCl 1:(a)I D -V G 曲線圖
;(b)I D -V G4 放大圖 ............................................................................................. 84
圖 4-49 圓形通道寬長比 100 量測 pCl 4~ pCl 1 之線性度........................................... 85
圖 4-50 圓形通道寬長比 100 量測 pCl 4~pCl 1:(a) I D -V G 曲線
圖;(b) I D -V G 放大圖 ......................................................................................... 86
圖 4-51 圓形通道寬長比 100 量測 pCl 4~ pCl 1 之線性度........................................... 87 XII

圖 4-52 氫氧化鉀溶液,圓形通道寬長比 100 量測 pOH 2 之
I D -V G 曲線圖 ....................................................................................................... 88
圖 4-53 氯化銨溶液,圓形通道寬長比 100 量測 p
4
NH 2 之
I D -V G 曲線圖 ....................................................................................................... 89
圖 4-54 氯化鈣溶液,圓形通道寬長比 100 量測 pCa 2 之 I D -V G
曲線圖 ................................................................................................................. 89




























表目錄

表 1-1 傳統型離子感測器與微機電微型離子感測器比較 ............................................. 2
表 2-2 各式離子感測器之特性比較 ................................................................................. 9
表 3-3 元件設計規格參數表 ........................................................................................... 15
表 3-4 伸式閘極場效電晶體之製程 Run Card ............................................................... 24
表 3-5 封裝晶片上蓋之製程 Run Card ........................................................................... 26
表 3-6 標準清洗製程參數 ............................................................................................... 28
表 3-7 反應式離子離子蝕刻之矽蝕刻製程參數表 ....................................................... 29
表 3-8 鈉離子感測薄膜條配比例 ................................................................................... 36
表 3-9 鈣離子感測薄膜條配比例 ................................................................................... 38
表 3-10 氯離子感測薄膜之成分比例 ............................................................................. 39
表 3-11 銨離子感測薄膜之成分比例 ............................................................................. 41
表 4-1 方形與圓形源、汲極之閘極漏電流比較 ........................................................... 44
表 4-2 汲極電流比較表 ................................................................................................... 45
表 4-3 鈉離子感測器靈敏度、線性度量測整理 ........................................................... 54
表 4-4 鈉離子感測器之干擾離子量測結果整理 ........................................................... 57
表 4-5 鈣離子感測器靈敏度、線性度量測整理 ........................................................... 65
表 4-6 鈣離子感測器之干擾離子量測結果整理 ........................................................... 68
表 4-7 銨離子感測器靈敏度、線性度量測整理 ........................................................... 77
表 4-8 銨離子感測器之干擾離子量測結果整理 ........................................................... 79
表 4-9 氯離子感測器靈敏度、線性度量測整理 ........................................................... 88
表 4-10 氯離子感測器之干擾離子量測結果整理 ......................................................... 90
參考文獻 References
[1] X. J. Juan, L. X. Liang, and C. H. Yuan, “Analytical Aspects of FET-based
Biosensors,” Front. Biosci. 10, 420-430 (2005).
[2] A. davenport, “Audit of the Effect of Dialysate Sodium Concentration on
Inter-Dialytic Weight Gains and Blood Pressure Control in Chronic Haemodialysis
Patients,” Nephron Clinical practice 104,3 (2006)
[3] Panel on Dietary Reference Intakes for Electrolytes and Water Standing Committee
on the Scientific Evaluation of Dietary “Reference Intakes Food and Nutrition
BoardDietary Reference Intakes for Water, Potassium, Sodium, Chloride, and
Sulfate,” Institude of Medicine of The National Academies.
[4] S. Koch, and R. Taylor, “Chloride Ion in Intensive Care Medicine,” Crit. Care Med.
20, 227-240 (1992).
[5] H. Kenji, M. Hiroaki, and N. Naomi, “Chloride Ion Modulates Cell Proliferation of
Human Androgen-independent Prostatic Cancer Cell,” Cell. Physio.l Biochem. 25,
379-388 (2010).
[6] D. Sinniah, T. T. Fulton, and H. Mcullough, “Venous Blood Ammonium Levels in
Control Subjects and in Patients with Disorders of the Liver,” J. Clin Pathol 23(8),
720-726 (1970).
[7] M. S. Frant, “Historical perspective. History of Early Commercialization of
Ion-Selective Electrodes,” Analyst 119(11), 2293-2301 (1994).
[8] B.-K. Sohn and C.-S. Kim, “A new pH-ISFET based dissolved oxygen sensor by
employing electrolysis of oxygen ,” Sens. Actuators B: Chem. 34(1-3), 435-440
(1996).
[9] M. L. Pourciel-Gouzy, W. Sant, I. Humenyuk, L. Malaquin, X. Dollat and P.
Temple-Boyer, “Development of pH-ISFET sensors for the detection of bacterial 94

activity,” Sens. Actuators B: Chem. 103(1–2), 247-251 (2004).
[10] J. F. V. Ṕerez, M. M. M. Velasco, M. E. M. Rosas and H. L. M. Reyes, “ ISFET
sensors characterization ,” Procedia Eng. 35, 270-275 (2012).
[11] A. Bratov, N. Abramova, C. Domı́nguez and A. Baldi, “Ion-selective field effect
transistor (isfet)-based calcium ion sensors with photocured polyurethane membrane
suitable for ionised calcium determination in milk ,” Anal. Chim. Acta 408(1-2),
57-64 (2000)
[12] I.-Y. Huang, R.-S. Huang and L.-H. Lo, “Improvement of integrated Ag/AgCl
thin-film electrodes by KCl-gel coating for ISFET applications,” Sens. Actuators B:
Chem. 94(1), 53-64 (2000).
[13] P. Bergveld, “Development of an Ion-sensitive Solid-state Device for
Neurophysiological Measurements,” IEEE Trans. Bio-Med. Electron 17(1), 70-71
(1970).
[14] P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and
what may happen in the next 30 years,” Sens. Actuators, B 88(1), 1-20 (2003).
[15] C. J. Jorquera, O. Jahir and B. Antoni, “ISFET based microsensors for environmental
monitoring,” Sens. Actuators, B 10(1), 61-83 (2010).
[16] J. V. D. Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical
sensitive field effect transistor as multi-species microprobe,” S Sens. Actuators, B 4,
291-298 (1983).
[17] J. Schoning, and A. Poghossian, “Recent Advances in Biologically Sensitive
Field-effect Transistors,” Analyst 127, 1137-1151 (2002).
[18] E. M. Guerra, G. R. Silva and M. Mulato, “Extended gate field effect transistor using
V 2 O 5 xerogel sensing membrane by sol–gel method,” Solid State Sci. 11(2), 456-460 95

(2009).
[19] L.-L. Chi, J.-C. Chou, W.-Y. Chung, T.-P. Sun and S.-K. Hsiung, “Study on extended
gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys.
63(1), 19-23 (2000).
[20] J.-L. Chiang, S.-S. Jhan, S.-C. Hsieh and A.-L. Huang, “Hydrogen ion sensors based
on indium tin oxide thin film using radio frequency sputtering system,” Thin Solid
Films 517(17), 4805-4809 (2009).
[21] Z. Cao, Z.-L. Xiao, L. Zhang, D.-M. Luo, M. Kamahori and M. Shimoda, “Molecule
counting with alkanethiol and DNA immobilized on gold microplates for extended
gate FET,” Mater. Sci. Eng.C 33(3), 1481-1490 (2013).
[22] J.-C. Chen, J.-C. Chou, T.-P. Sun, S.-K. Hsiung, “Portable urea biosensor based on
the extended-gate field effect transistor,” Sens. Actuators B: Chem. 91(1-3), 180-186
(2003).
[23] B. Johan, A. Ivaska, and A. Lewenstam, “Potentiometric Ion Sensors,” Chem. Rev.
108, 329-351 (2008).
[24] D. E. Yate, S. Levine and T. W. Healy, “Site-binding mode of the Electrical Double
Layer at the Oxide/Water Interface,” J. Chem. Soc., Faraday Trans. 70, 1807-1811
(1974).
[25] 黃義佑,含有積體化微固態參考電極及背接式結構的單晶片酸鹼值感測器,清
華大學電機工程博士論文, 2002.
[26] L. M. i Codinachs, A. Baldi, A. Merlos, N. Abramova, A. Ipatov,C.
Jiménez-Jorquera and Andrey Bratov, “Integrated Multisensor for FIA-Based
Electronic Tongue Applications,” IEEE Sens. J. 8(5-6), 608-615 (2008). 96

[27] Sigma-aldrich, “http://www.sigmaaldrich.com/taiwan.html”
[28] S. Amemiya , P. Bühlmann , E. Pretsch , B. Rusterholz and Y. Umezawa,
“Cationic or Anionic Sites-Selectivity Optimization of Ion-Selective Electrodes
Based on Charged Ionophores,” Anal. Chem. 72(7), 1618–1631 (2000).
[29] E. Bakker and E. Pretsch, “Ion-Selective Electrodes Based on Two Competitive
Ionophores for Determining Effective Stability Constants of Ion−Carrier Complexes
in Solvent Polymeric Membranes,” Anal. Chem. 70(2), 395-302 (1998).
[30] 王詩涵,微製造技術應用於鈣離子感測器及 奈米氧化鎢二氧化氮感測器 ,國
立成功大學 化學工程研究所 博士論文 ,中華民國九十二年七月
[31] I. Bedlechowicz-Śliwakowska, P. Lingenfelter, T. Sokalski, A. Lewenstam and M.
Maj-Żurawska, “Ion-selective electrode for measuring low Ca
2+
concentrations in the
presence of high K
+
, Na
+
and Mg
2+
background,” Anal Bioanal Chem. 385(8),
1477-1482 (2006).
[32] P. Bühlmann , E. Pretsch and E. Bakker, “Carrier-Based Ion-Selective Electrodes
and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors,” Chem
Rev. 98(4), 1593-1688 (1998).
[33] X. K. Ping, B. Philippe, and N. Seiichi, “A Chloride Ion-Selective Solvent Polymeric
Membrane Electrode Based on a Hydrogen Bond Forming Ionophore,” Anal. Chem.
69, 1038-1044 (1997).
[34] L. Monika, W. Marcin, and B. Ewa, “Chloride-Selective Electrodes with
Poly(n-butyl acrylate) Based Membranes,” Electroanalysis 19(2-3), 393 – 397
(2007).
[35] L. Xiaoxuan, J. Ming, and L. Xingwei, “Chlorine Ion Sensor Based on Polyaniline
Film Electrode,” Sens. Actuators, B. 97, 144–147 (2004). [36] B. Andrey, A. Natalia, and D. Carlos, “Investigation of Chloride Sensitive ISFETs
with Different Membrane Compositions Suitable for Medical Applications,” Anal.
Chim. Acta. 514, 99–106 (2004).
[37] S. S. Ichi, A. Tsuyoshi, and G. Monma, “Comparison of Two Molecular Design
Strategies for the Development of an Ammonium Ionophore More Highly Selective
than Nonactin,” Anal. Chem. 74, 4845-4848, (2002).
[38] Nico2000 Ltd, “http://www.nico2000.net/analytical/sodium.htmk”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.145.82.104
論文開放下載的時間是 校外不公開

Your IP address is 54.145.82.104
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code