Responsive image
博碩士論文 etd-0722114-223155 詳細資訊
Title page for etd-0722114-223155
論文名稱
Title
以Z掃描技術研究石墨烯之非線性光學特性
The nonlinear optical properties of graphene by Z-scan technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-16
繳交日期
Date of Submission
2014-08-22
關鍵字
Keywords
非線性折射、光學克爾效應、飽和吸收、雙光子吸收、非線性吸收、Z-掃描、石墨烯
Nonlinear Refraction (NLR), Nonlinear Absorption (NLA), Z-scan, Two Photon Absorption (TPA), Saturation Absorption (SA), Graphene, Optical Kerr effect (OKE)
統計
Statistics
本論文已被瀏覽 5711 次,被下載 106
The thesis/dissertation has been browsed 5711 times, has been downloaded 106 times.
中文摘要
本論文利用Z-scan量測技術研究石墨烯飽和吸收體(graphene saturable absorber)之非線性光學性質。本研究所使用的光源為二倍頻、Q-開關以及鎖模的摻釹釔鋁石榴石雷射系統(frequency doubled, Q-switched and mode-locked Nd:YAG laser)。在樣品的方面,利用了化學氣相沉積法(Chemical Vapor Deposition, CVD)生長不同層數的原子層石墨烯,分別有1、8及16層三種。
由超快皮秒級、波長532nm的Nd:YAG雷射入射至上述三種不同層數的樣品上,並改變不同的雷射脈衝的能量來進行量測,觀察其不同的非線性光學的效應。透過Z-scan實驗技術,量測到不同層數的石墨烯材料之非線性吸收及非線性折射光學參數。由實驗結果分析,量測到非線性吸收係數α(I)與非線性折射係數n(I)的範圍分別為0.468到3.563 (108 cm-1)及0.733到5.506 (108 cm-1),相較於其他半導體材料,化學氣相沉積法生長的石墨烯具有較大的非線性參數值。並發現我們的樣品為雙光子吸收的可能性不高,主要吸收來源為單光子吸收達到飽和所造成,但若高層數或不完善的石墨烯在能量大於40 GW/cm2時,雙光子吸收的機制有可能介入。
Abstract
In the thesis, we used Z-scan technique to study the nonlinear optical properties of graphene saturable absorber. The light source employed in this study is frequency doubled, Q-switched and mode-locked Nd:YAG laser. As for the samples, we took advantage of CVD method to grow atomic layer graphene, and acquired different layers, which are 1-, 8-, and 16-layers.
By injecting an ultrafast, picosecond, 532 nm wavelength Nd:YAG laser into the above-mentioned three samples, and using different laser pulse energies to measure and investigating various nonlinear optical effects of graphene. Through Z-scan experiment, we measured the nonlinear absorption and nonlinear refractive optical coefficient for different layers graphene material.
As a result, the nonlinear absorption coefficient α(I) and nonlinear refractive index n(I) are obtained as 0.468 to 3.563 (108 cm-1) and 0.733 to 5.506 (108 cm-1), respectively. Compared with other semiconductor materials, graphene grown by CVD method has large nonlinear parameters. In addition, we concluded that the nonlinear effects might not be resulted from two photon absorption. The main source of absorption is the saturation of single photon absorption. But for graphene with more layers or defects under intensity exceeds 40 GW/cm2, TPA mechanism might be involved.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii

第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 5

第二章 理論概述 6
2.1 奈米石墨烯材料 6
2.1.1 石墨烯簡介 6
2.1.2 石墨烯的能帶 7
2.1.3 結構分析 11
2.1.4 光電應用 16
2.2 非線性的光傳播 17
2.2.1 光傳播方程式 17
2.2.1.1 線性吸收與折射 22
2.2.1.2 非線性吸收與折射 23
2.2.2 非線性光學 24
2.2.2.1 三階非線性光學 24
2.2.2.2 高階非線性光學 26
2.2.3 飽和吸收(SA) 27
2.2.4 Z-scan理論 29

第三章 樣品製備與實驗架設 35
3.1 石墨烯樣品製備 35
3.1.1 石墨烯製程-化學氣相沉積法 35
3.1.2 石墨烯轉印 36
3.2 實驗儀器架設與相關量測技術 38
3.2.1 雷射系統 38
3.2.2 針孔掃描技術 39
3.2.3 自相干儀量測技術 40
3.2.4 Z-scan技術 42

第四章 實驗結果與分析 48
4.1 石墨烯的光學特性 48
4.2 Z-scan量測結果 54

第五章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 68

參考文獻 69
參考文獻 References
[1] A. M. Weiner, Ultrafast Optics, Wiley (2009).
[2] H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electronics, vol. 6, pp. 1173-1185 (2000).
[3] H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys., vol. 46, pp. 3049-3058 (1975).
[4] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, vol. 4, pp. 611-622 (2010).
[5] P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G. R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express, vol. 20, pp. 2460-2465 (2012).
[6] M. I. Katsnelson, “Graphene: carbon in two dimensions,” Materials Today, vol. 10, pp. 20-27 (2007).
[7] 林永昌、呂俊頡、鄭碩方、邱博文,石墨烯之電子能帶特性與其元件應用,物理雙月刊,33卷,2期,pp.199-202 (2011)。
[8] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109-162 (2009).
[9] R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical kataura plot”, Nano Lett., vol. 3, pp. 1235-1238 (2003).
[10] M. Freitag, “Graphene: trilayers unravelled,” Nature Physics, vol. 7, pp. 596-597 (2011).
[11] N. Savage, “Graphene makes transistors tunable,” IEEE Spectrum (2009).
[12] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and bandgap opening,” ACS Nano, vol. 2, pp 2301-2305 (2008).
[13] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett., vol. 9, pp. 30-35 (2009).
[14] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Yong P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nature Materials, vol. 10, pp. 443-449 (2011).
[15] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, “Reduction of graphene oxide via l-ascorbic acid,” Chem. Commun., vol. 46, pp. 1112–1114 (2010).
[16] P. Begum, R. Ikhtiari, and B. Fugetsu, “Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce,” Carbon, vol. 49, pp. 3907–3919 (2011).
[17] 陳士元,材料的非線性折射性質量測,國立中正大學碩士論文 (1996)。
[18] M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electronics, vol. 26, pp. 760-769 (1990).
[19] E. W. Van Stryland, M. A. Woodall, H. Vanherzeele and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett., vol. 10, pp. 490-492 (1985).
[20] E. W. Van Stryland and M. S. Bahae, “Z-scan measurements of optical nonlinearities,” Characterization Techniques and Tabulations for Organic Nonlinear Materials, pp. 655 (1998).
[21] Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett., vol. 96, pp. 051122 -051123 (2010).
[22] E. Garmire, “Resonant optical nonlinearities in semiconductors”, IEEE J. Sel. Top. Quantum Electronics, vol. 6, pp. 1094-1110 (2000).
[23] M. S. Bahae, A. A. Said and E. W. Van Stryland, “High sensitivity single beam n2 measurement” Opt. Lett. , vol. 14, pp. 955-957 (1989).
[24] 賴響安,太青素對光的熱折射效應研究,國立中正大學碩士論文 (1999)。
[25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science , vol. 306, pp. 666-669 (2004).
[26] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 312, pp. 1191-1196 (2006).
[27] G. Eda1, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nature Nanotechnology, vol. 3, pp. 270-274 (2008).
[28] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312-1314 (2009).
[29] 李洛忻,溶劑對有機染料吸收性質的影響,國立中正大學碩士論文 (2012)。
[30] W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun., vol. 50, pp. 256-260 (1984).
[31] 徐銘駿,與偏振無關之摻雜偶氮染料膽固醇液晶之非線性特性硏究,國立中山大學碩士論文 (2012)。
[32] D. A. Skoog, F. J. Holler, S. R. Crouch, “Principles of Instrumental Analysis,” Cengage Learning (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code