Responsive image
博碩士論文 etd-0722115-144915 詳細資訊
Title page for etd-0722115-144915
論文名稱
Title
玉山登山步道高海拔土壤無脊椎動物群落結構之比較
Comparison of the Community Structure of Soil Invertebrates in the High Altitude Area of Yushan Hiking Trails
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-30
繳交日期
Date of Submission
2015-08-22
關鍵字
Keywords
土壤無脊椎動物、高海拔、掉落式陷阱、相關性、環境因子
soil invertebrates, high altitude, pitfall trap, correlation, environmental factor
統計
Statistics
本論文已被瀏覽 5672 次,被下載 451
The thesis/dissertation has been browsed 5672 times, has been downloaded 451 times.
中文摘要
土壤無脊椎動物是生態系中很重要的消費者和分解者,牠們參與自然環境中凋落物的破碎、分解、物質循環及能量流動,其群落組成也受環境物理因子影響,在時間、空間中有所變異。本研究在針對楠梓仙溪上游高海拔南向坡的玉山登山步道與麟趾山步道周圍區域,欲瞭解一年四季的不同海拔天然植被中,土壤無脊椎動物數量與種類的動態變化。2013年12月起至2014年11月止,在不同海拔的四個樣區:混生林區、鐵杉林區、冷杉林區及灌叢區,以掉落式陷阱每季各區各設置8個樣點,放置1星期後收回鑑定。一年共採集到128個樣本,記錄到大、中、小土壤無脊椎動物共計322,793隻,分屬於3門21目,共24個類群。其中彈尾目在冷杉林區春季與夏季大量出現,占總採集數98.9%,是各樣區與各季節之優勢物種,其他季節與樣區的土壤無脊椎動物常見類群順序為蜱蟎目、雙翅目、鞘翅目、蜘蛛目、膜翅目。各樣區土壤無脊椎動物類群數有顯著差異;以混生林區最多,灌叢區最少,類群數有隨海拔樣區高度的升高而降低的趨勢。各季節土壤無脊椎動物類群,以夏季最多,春季最少。各樣區與四季土壤無脊椎動物群落的相似度,以混生林區與冷杉林區相似度最高,鐵杉林區與灌叢區相似度最低,相似度有海拔高度差異愈大,相似度愈低的趨勢。季節以夏季與秋季相似度最高,夏季與春季最低。不同海拔樣區與四季的土壤無脊椎動物群落各生物多樣性指數,Shannon-Wiene多樣性指數(H’)、Pielou均勻度指數(E)的變化趨勢一致,分別是鐵杉林區最高,混生林區次之,灌叢區第三,冷杉林區最小,四季變化為秋季最高,冬季次之,春季第三,夏季最小,Simpson優勢度指數(C)卻有完全相反的趨勢變化。氣候因子的平均溫、最低溫、雨量、日照時數、能見度與土壤環境因子的有效鈣、有效鎂、鋅、鈉、導電度,是高海拔土壤無脊椎動物群落的類群數、各生物多樣性指數與常見類群數量的有顯著相關性環境因子。
Abstract
Soil invertebrates are important consumers and decomposers in the ecological system. They crumble the litterfall, decompose them, facilitate the circulation of materials, and promote the energy flow in ecosystem. Their community structure is influenced by physical factors and is varied spatio-temporally. This study was aimed at investigating the dynamic composition of soil invertebrates among the four seasons in the high altitude area around Yushan Hiking Trails and Mt. Ling-jih Hiking Trails. From December 2013 to November 2014, we used pitfall traps to collect samples in the four sample plots: mixed forest, hemlock forest, fir forest, and shrub area. For each sample plot in each season, eight pitfall traps were set for one week to collect soil invertebrates. The 128 collected samples included 322793 soil invertebrates which can be further categorized into 24 taxonomic groups (3 phyla and 21 orders). Among them, the collembola was frequently observed in spring and summer in the fir forest. They were the dominant species in each sample plot in each season, occupying 98.9% of the samples. The ordering of the frequently observed soil invertebrates in other seasons and sample plots was acarina, diptera, coleoptera, araneae, and hymenoptera. The number of taxonomic groups differed significantly among the four sample plots. Mixed forest was the largest and the shrub area was the smallest. In addition, the number of biological groups decreased with the increase of altitude. As for the influence of time, the number of biological groups was the largest in summer and the samllest in spring. Concerning the degree of similarity of the community structure of soil inverebrates, the degree between the mixed forest and the fir forest was the highest, but that between the hemlock forest and the shrub area was the lowest. Furthermore, the degree of similarity between summer and autumn was high, and that between summer and spring was low. Thus the degree of similarity of community structure varied according to the different altitude and seasons. The index of biodiversity from Shannon-Wiener diversity index and Pielou evenness index demonstrated the similar trend of variation in the sample plots and in the four seasons. As for the variation in the sample plots, hemlock forest was the greatest, mixed forest second, shrub area third, and fir forest the least. Regarding the variation among the four seasons, autumn was the greatest, winter second, spring third, and summer the least. However, Simpson dominance index showed the reverse tendency. The climatic factors (e.g., average temperature, minimum temperature, rainfal, sunshine-hour and visibility) and the soil environmental factors (e.g., available calcium, available magnesium, zinc, sodium and conductivity) were the significant factors affecting the number of taxonomic groups, the index of biodiversity, and abundance in soil invertebrates in the high altitude.
目次 Table of Contents
論文審定書………….………………………………………………………...…… i
誌謝…………………………………………………………………….…..……… ii
中文摘要…………………………………………………..…………….…….….. iii
英文摘要……..………………………………………………..…………….………. v
前言…………………………………………….…………………………………... 1
材料與方法……………………………………….…………………………….….. 4
結果…………………………………………....…………………………………… 8
討論……………………………………………………………………………..… 20
參考文獻………………………………………………………………………...... 26
參考文獻 References
Castro-Ferreira, M. P., Roelofs, D., van Gestel, C. A., Verweij, R. A., Soares, A. M., and Amorim, M. J. 2012. Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere 87: 1222-1227.
Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J., and Lavelle, P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology 42: S23- S38.
Hopkin, S. P. 1997. The Biology of the Collembola (Springtails): The Most Abundant Insects in the World. Natural History Museum, London, UK.
Jaccard, P. 1901. Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547- 579.
Karsten, G. R., and Harold L. D. 1995. Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Applied and Environmental Microbiology 61: 1039-1044.
Koivula, M., Kotze, D. J., Hiisivuori, L., and Rita, H. 2003. Pitfall trap efficiency: do trap size, collecting fluid and vegetation structure matter? Entomologica Fennica 14: 1-14.
Körner, C., and Paulsen, J. 2004. A world‐wide study of high altitude treeline temperatures. Journal of Biogeography 31: 713-732.
Magurran, A. E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, N.J.
Margalef, R. 1958. Temporal Succession and Spatial Heterogeneity in Phytoplankton. University of California press, Berkeley, California.
Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144.
Prasifka, J. R., Lopez, M. D., Hellmich, R. L., Lewis, L. C., and Dively, G. P. 2007. Comparison of pitfall traps and litter bags for sampling ground‐dwelling arthropods. Journal of Applied Entomology 131: 115-120.
Salmon, S., and Ponge, J. F. 2001. Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biology and Biochemistry 33: 1959-1969.
Santorufo, L., Van Gestel, C. A., and Maisto, G. 2012. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates. Chemosphere 88: 418-425.
Shannon, C.E., and Weaver, W. 1949. The Mathematical Theory of Communication, University of Illinois Press, Chicago. 117pp.
Shao, Y.H., Zhang, W.X., Shen, J.C., Zhou, L.X., Xia, H.P., Shu, W.S., Ferris, H., and Fu, S.L. 2008. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biology and Biochemistry 40: 2040-2046.
Su, H. J. 1984. Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17: 57-73.
Tian, G., Brussaard, L., Kang, B.T., and Swift, M.J. 1997. Soil fauna-mediated decomposition of plant residues under constrained environmental conditions. Pp. 125-134. in Cadisch G, and Giller K.E., eds. Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford, UK.
Verhoef, H. A., and Brussaard, L. 1990. Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochemistry 11: 175-211.
Wall, D. H., R. D. Bardgett, A. P. Covich, and P. V. R. Snelgrove. 2004. Understanding the functions of biodiversity in soils and sediments willenhance global ecosystem sustain-ability and social well-being. pp. 249-254. In D. H. Wall, ed., Sustaining Biodiversity and Ecosystem Service in Soils and Sediments, Island Press, Washington, D.C.
Ward, D. F., New, T. R., and Yen, A. L. 2001. Effects of pitfall trap spacing on the abundance, richness and composition of invertebrate catches. Journal of Insect Conservation 5: 47-53.
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., and Wall, D. H. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633.
Wolters, V. 2001. Biodiversity of soil animals and its function. European Journal of Soil Biology 37: 221-227.
尹文英、楊逢春、王振中。1992。中國亞熱帶土壤動物。北京:科學出版社。
尹文英。2001。土壤動物學研究的回顧與展望。生物學通報,36: 1-3。
尹文英。1998。中國土壤動物檢索圖鑑。北京:科學出版社。
王海霞、殷秀琴、周道瑋。2003。松嫩草原區農牧林複合系統大型土壤動物生態
學研究。草業學報,12: 84-89。
任立宗。1992。馬尾松林蜘蛛群落組成及其聚類分析。林業科學研究,5: 417-422.
全鴻德。2007。塔塔加地區植物相調查與解說規劃。靜宜大學生態學研究所學位
論文。
佟富春、金哲東、王慶禮、肖以華。2003。長白山北坡土壤動物群落物種共有度
的海拔梯度變化。應用生態學報,14: 1723-1728。
吳冠億。2012。不同耕作模式荔枝園之土壤動物群聚及食物來源與營養階層之探
討。台南大學環境生態研究所學位論文。
李玉娟、吳紀華、陳慧麗、陳家寬。2005。線蟲作為土壤健康指示生物的方法及
應用。應用生態學報,16: 1541-1546.。
李志安、鄒碧、丁永禎、曹裕松。2004。森林植物凋落物分解重要影響因子及其
研究進展。生態學雜誌,23: 77-83。
易蘭,由文輝。2006。浙江天童栲樹林土壤動物群落結構及其季節變化。華東師
範大學學報,3: 112-120。
林京翰。2012。合歡山臺灣冷杉林植物凋落物動態。臺灣大學森林環境暨資源學
研究所學位論文。
林英華、孫家寶、鄭桂華、張夫道、孫龍、金森。2006。帽兒山土壤動物在凋落
葉分解過程中的動態和作用。東北林業大學學報,33: 33-36。
胡靜、楊效東。2012。熱帶次生林2 種不同捕食策略地表蜘蛛的種內,種間競爭
強度及土壤N的調節作用。中國農學通報,28: 59-65。
唐仕華。1997。養殖蚯蚓提高土壤肥力。 世界热带農業信息,1-3。
秦海浪、楊效東。2014。常綠闊葉林土壤動物群落結構及在海拔梯度上的差異。
中國農學通報,30: 66-74。
馬淑敏、孫振鈞、王冲。2008。蚯蚓-甜高梁複合系統對土壤鎘污染的修復作用及
機理初探。農業環境科學學報,27: 133-138。
張立宏、許光輝。1990。微生物和蚯蚓的協同作用對土壤肥力影響的研究。生態
學报,10: 116-120。
張宇博、楊海軍、王德利、肖志堅、韓吉玥。2008。受損河岸生態修復工程的土
壤生物學評價。應用生態學報,19: 1374-1380。
張兵、倪珍、常亮、武海濤、孫新、吳東輝。2014。雪地生活跳蟲研究進展。生
態學報,34: 1922-1936。
張寶貴。2012。蚯蚓與微生物的相互作用。生態學報,17: 556-560。
曹安堂、王慶忠。2003。土壤動物研究概述。濰坊教育學院學報,16: 37–40。
梁文舉、張萬民、李維光、段玉璽。2001。施用化肥對黑土地區線蟲群落組成及
多樣性產生的影響。生物多樣性,9: 237-240。
莊俊逸、袁孝維、王亞男、吳星輝。2005。塔塔加地區土壤動物動態變化之初步
研究。中華林學季刊,38: 19-35。
陰環。2004。陝西長安光頭山土壤動物群落多樣性研究。陝西師範大學動物學研
究所學位論文。
陳建秀、麻智春、嚴海娟、張峰。2007。跳蟲在土壤生態系統中的作用。生物多
樣性, 15: 154-161。
黃杰靈,胡廣,袁金鳳,羅媛媛。2013。陷阱法和Winkler 法調查土壤節肢動物
多樣性比較: 以千島湖島嶼封閉生境研究為例。 應用昆蟲學報,50: 1679
-1691。
楊國禎、陳玉峰、趙偉村、陳欣一、吳樂天、趙國容、呂政峰。2002。玉山國家
公園楠梓仙溪流域植物資源調查研究。內政部營建署玉山國家公園管理處委
託研究報告(編號:1038)。
葉文斌、李蕙宜、廖盈盈。2012。雪山圈谷灌木叢昆蟲群聚組成及季節性變動調
查。國家公園學報,22:18-26。
葛源。2005。殘落物分解過程中動物群落結構功能演替的實驗研究。中國農業大
學資源與環境學院生態學專業碩士學位論文。
劉繼亮。2007。左家自然保護區土壤動物生態序列研究。東北師範大學碩士學位
論文。
韓勇。2009。武夷山不同海拔土壤動物對植物凋落物的分解效應。南京林業大學
碩士學位論文。
簡江豪。2007。山崩改變台灣南部季風林落葉層的甲蟎群落組成。成功大學生命
科學系學位論文。
嚴瑩、李愷、方燕。2010。浙江百山祖自然保護區不同海拔土壤動物群落結構及
季節動態。生態學雜誌,9: 014。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code