Responsive image
博碩士論文 etd-0722115-185457 詳細資訊
Title page for etd-0722115-185457
論文名稱
Title
利用蝕刻光子晶體光纖形成同軸光纖結構以製作Fabry-Pérot光纖干涉儀
Coaxial-Fiber-based Fabry-Pérot Interferometers Formed By Etching Photonics Crystal Fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-08-22
關鍵字
Keywords
光子晶體光纖、Fabry-Pérot光纖干涉儀、微光纖、光纖感測器
microfiber, fiber sensor, Photonics crystal fiber, Fabry-Pérot fiber interferometer
統計
Statistics
本論文已被瀏覽 5808 次,被下載 461
The thesis/dissertation has been browsed 5808 times, has been downloaded 461 times.
中文摘要
光纖Fabry-Pérot干涉儀感測器具有體積小、抗電磁干擾以及能夠進行探針式感測等優點,因此在近年來被廣泛地研究與討論。光纖Fabry-Pérot干涉儀是在光纖中製造兩個反射面,當光通過這兩個反射面時,會產生兩道帶有相位差的反射光而形成反射干涉頻譜。過去文獻提出利用微光纖作為Fabry-Pérot光纖干涉儀的共振腔,其具有折射率敏感度高以及可操作於高溫環境下的優點,但製作過程複雜且製程設備非常昂貴。因此,本論文利用蝕刻光子晶體光纖的方式,在光纖末端製作出同軸光纖結構以形成兩道反射面,成功地製作出同軸Fabry-Pérot光纖干涉儀。藉由改變蝕刻參數,我們可以製作出不同元件長度與纖芯尺寸之同軸Fabry-Pérot光纖干涉儀,並且當元件長度為31.9μm且纖芯直徑為3.1μm時,可以得最大反射干涉頻譜對比度為6dB。
我們利用製作出的同軸Fabry-Pérot光纖干涉儀進行溫度、折射率及振動感測。當外環境溫度變化範圍在攝氏30oC至90oC時,其溫度敏感度約為9pm/oC;當外環境溫度變化範圍在攝氏100oC至900oC時,元件溫度敏感度約為14pm/oC,顯示了我們所製作的同軸Fabry-Pérot 光纖干涉儀可避免溫度的交叉干擾。此外,其對外在環境折射率的敏感度為121nm/RIU。而在振動感測中,我們展示了振動頻率由400Hz至5000Hz的振動頻譜,並在元件長度為31.9μm時,會有最大的訊雜比為50dB。由實驗結果可知,我們提出的同軸Fabry-Pérot 光纖干涉儀感測器可操作在高溫下進行感測,並且對外在環境折射率及振動都有明顯的響應。
Abstract
Fiber Fabry-Pérot interferometers (FFPIs) have been widely explored in many fields in recent years due to their advantages such as ultra-compact size, immunity to electromagnetic interference, and probe-typed sensing. The concept of the FFPI structures is to fabricate two mirrors in a fiber to form two reflected light beams with different optical paths. We can then obtain the reflection interference spectrum. Recently, microfiber-based FPI sensors have been demonstrated in refractive index (RI) and high temperature sensing. However, their fabrication process is complicated and expensive. In this thesis, we propose a coaxial-fiber-based FPI by simply etching a photonic crystal fiber. The coaxial fiber on a SMF tip can form a cavity with two reflective mirrors as a FFPI. By varying the etching parameters, we can obtain coaxial-fiber-based FPIs with different device lengths and core diameters. As the device length is 31.9μm and core diameter is 3.1μm, we can have a reflection interference spectrum with a 6-dB extinction ratio.
We have applied the coaxial-fiber-based FFPI to temperature, RI and vibration sensing. As we gradually raise the temperature from 30°C to 90°C, we can obtain the temperature sensitivity about 9pm/oC. And as we increase the temperature from 100°C to 900°C, we can get the high-temperature sensitivity about 14pm/oC, which shows that our fabricated coaxial-fiber-based FPIs can avoid temperature disturbance. In addition, the RI sensitivity is about 121nm/RIU as the surrounding refractive index varied from 1.3359 to 1.3478. We have also demonstrated the vibration sensing application of our FFPI. We can obtain the highest 50-dB signal to noise ratio as the device length is 31.9μm. As the result, our proposed coaxial-fiber-based FPI can be used in many sensing fields and are sensitive to both RI and vibration.
目次 Table of Contents
目錄
致謝 i
中文摘要 ii
Abstract iii
目錄 v
表錄 vii
圖錄 viii
第一章 緒論 1
1-1光纖干涉儀 1
1-2光纖干涉儀感測器種類與介紹 4
1-3研究動機與目的 10
第二章 Fabry-Pérot光纖干涉儀 12
2-1 Fabry-Pérot干涉儀 12
2-2光纖Fabry-Pérot干涉儀 18
第三章 同軸Fabry-Pérot光纖干涉儀的製作 21
3-1同軸微光纖干涉儀文獻回顧 21
3-2元件製作方法 25
3-2.1材料介紹 25
3-2.2 元件製作 26
3-3蝕刻製程特性 30
第四章 同軸Fabry-Pérot光纖干涉儀之干涉特性量測 33
4-1同軸Fabry-Pérot光纖干涉儀之元件原理簡介 33
4-2同軸Fabry-Pérot光纖干涉儀之干涉特性量測 35
4-2.1蝕刻前與蝕刻後元件干涉特性量測 35
4-2.2不同元件長度干涉特性量測 37
4-2.3不同纖芯直徑之干涉特性量測 39
4-3元件共振腔長度與FSR關係 41
第五章 同軸Fabry-Pérot光纖干涉儀之感測應用 43
5-1溫度感測 43
5-2折射率感測 48
5-3振動感測 51
第六章 結論 59
參考文獻 60
參考文獻 References
[1] J. Hecht, “Short history of laser development,” Opt. Eng., vol. 49, pp. 091002-091002-23, 2010.
[2] D. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt., vol. 19, pp. 2926-2929, 1980.
[3] S. Gao, W. Zhang, Z.-Y. Bai, H. Zhang, W. Lin, L. Wang, and J. Li, “Microfiber-enabled in-line Fabry-Pérot interferometer for high-Sensitive force and refractive index sensing,” J. Lightw. Technol., vol. 32, pp. 1682-1688, 2014.
[4] K. T. Grattan and B. Meggitt, Optical fiber sensor technology: Fundamentals (Kluwer Academic Publisher, 2000), pp.167-190.
[5] J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express, vol. 19, pp. 12418-12426, 2011.
[6] Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun., vol. 281, pp. 1538-1544, 2008.
[7] J. Chen, J. Zhou, and Z. Jia, “High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 25, pp. 2354-2357, 2013.
[8] Y. Liu, W. Peng, Y. Liang, X. Zhang, X. Zhou, and L. Pan, “Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement,” Opt. Commun., vol. 300, pp. 194-198, 2013.
[9] Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. and Actuators B Chem., vol. 199, pp. 31-35, 2014.
[10] B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Lit, “Temperature and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express, vol. 16, pp. 19291-19296, 2008.
[11] J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE Qu. Electro. J., vol. 18, pp. 1553-1559, 2012.
[12] Y. L. Lo and J. Sirkis, “Active homodyne demodulation of Mach-Zehnder interferometer optical fiber sensors,” Exp. Tech., vol. 18, pp. 33-36, 1994.
[13] Z. Tian, S. S. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett., vol. 20, pp. 1387-1389, 2008.
[14] Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, P. Lu, V. R. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt. Express, vol. 21, pp. 3031-3042, 2013.
[15] D. Lee, M. Yang, C. Qi, J. Dai, X. Wen, and W. Xie, “An in-line optical fiber refractometer with porous thin film coating,” Sens. and Actuators B Chem., vol. 209, pp. 602-605, 2015.
[16] F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry-Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightw. Technol., vol. 32, pp. 4026-4034, 2014.
[17] T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Pérot interferometer fabricated with a femtosecond laser,” Opt. Lett., vol. 33, pp. 536-538, 2008.
[18] J. Zhang, Q. Sun, R. Liang, W. Jia, X. Li, J. Wo, D. Liu, and P. P. Shum, “Microfiber Fabry-Pérot interferometer for dual-parameter sensing,” J. Lightw. Technol., vol. 31, pp. 1608-1615, 2013.
[19] M. Szustakowski, M. Chojnacki, M. Zyczkowski, and N. Palka, “Fibre optic distributed sensor of vibration in unbalanced Michelson's interferometer configuration,” Optoelectro. Rev., vol. 9, pp. 413-418, 2001.
[20] N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun., vol. 343, pp. 131-134, 2015.
[21] H. Ma, Z. Chen, and Z. Jin, “Single-polarization coupler based on air-core photonic bandgap fibers and implications for resonant fiber optic gyro,” J. Lightw. Technol., vol. 32, pp. 46-54, 2014.
[22] C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett., vol. 38, pp. 3283-3286, 2013.
[23] Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Pérot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens Actuators A Phys, vol. 148, pp. 33-38, 2008
[24] M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, and O. Frazao, “Post-processing of Fabry-Pérot microcavity tip sensor,” IEEE Photon. Technol. Lett., vol. 25, pp. 1593-1596, 2013.
[25] S. O. Kasap, Optoelectronics & Photonics: Principles & Practices: Pearson Higher Ed, 2012.
[26] E. Hecht, “Optics,” 4th Edition, Addison Wesley, New york, 2001.
[27] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, vol. 16, pp. 2252-2263, 2008.
[28] S. Pevec and D. Donlagic, “Miniature micro-wire based optical fiber-field access device,” Opt. Express, vol. 20, pp. 27874-27887, 2012.
[29] H. Proksche, G. Nagorsen, and D. Ross, “The influence of NH4F on the etch rates of undoped SiO2 in buffered oxide etch,” J. Electro. Soci., vol. 139, pp. 521-524, 1992.
[30] G. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci., vol. 28, pp. 6261-6273, 1993.
[31] Y. Wang, M. Yang, D. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” JOSA B, vol. 27, pp. 370-374, 2010.
[32] J. H. Wu, M. Kuo, and C. W. Chen, “Physical properties and crystallization behavior of poly (lactide)/poly (methyl methacrylate)/silica composites,” J. Appl. Polym. Sci., vol. 132, pp. 42378, 2015.
[33] W. Yunus and A. B. A. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
[34] C. Du and X. Yang, “Highly sensitive refractive index measurement based an a thinned fiber taper,” Micro. Opt. Technol. Lett., vol. 56, pp. 1054-1057, 2014.
[35] G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photon. Technol. Lett., vol. 24, pp. 658-660, 2012.
[36] Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on sm-nc-sm fiber structure,” IEEE Photon. J., vol. 7, pp. 1-7, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code