Responsive image
博碩士論文 etd-0722116-110404 詳細資訊
Title page for etd-0722116-110404
論文名稱
Title
新型高斯整數稀疏編碼多重存取系統
Novel Gaussian Integer Sparse Code Multiple Access
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-29
繳交日期
Date of Submission
2016-08-22
關鍵字
Keywords
稀疏編碼多重存取系統、峰均值功率比、稀疏完美高斯整數序列、稀疏編碼多重存取系統碼簿設計、消息傳遞演算法、高斯干擾近似演算法、多用戶估測器
Peak to Average Power Ratio, Gaussian Approximation of Interference, Sparse Gaussian Integer Perfect Sequence, Message Passing Algorithm, Codebook Design, SCMA, Multiple User Detector
統計
Statistics
本論文已被瀏覽 5690 次,被下載 19
The thesis/dissertation has been browsed 5690 times, has been downloaded 19 times.
中文摘要
稀疏編碼多重存取系統(Sparse Code Multiple Access, SCMA)是為了因應第五代行動通訊(5th Generation Mobile Networks)所提出的技術,有著增進頻寬使用效率(Spectrum Efficiency)的特點。在SCMA系統中,每個使用者都會被分配不同碼簿(Codebook),碼簿由多組碼字(Codeword)所組成,由使用者輸入SCMA Encoder的資料,選擇對應的碼字進行傳送。而每個使用者依照輸入訊號所選擇的碼字,經過通道之後,於接收端會因為使用者間的碼字間的非正交性而造成多重使用者干擾(Multiple User Interference, MUI)。在碼簿建構方面,我們利用稀疏完美高斯整數序列(Sparse Gaussian Integer Perfect Sequence, SGIPS)設計碼簿,把不同使用者所傳送出的碼字間的最短距離最大化做為設計的目標,提升多用戶偵測器(Multiple User Detector, MUD)的效能,另外,在頻域(Frequency Domain)建構碼字,利用SGIPS在對應的時域(Time Domain)有等振幅的特性,可以降低峰均值功率比(Peak-to-Average Power Ratio, PAPR)的問題。在接收端由於來自各個使用者的訊號會疊加在一起,所以我們利用SCMA的估測器進行解碼,可是傳統的估測器複雜度會隨著使用者數量以及碼簿的大小呈現指數成長,所以我們採用高斯干擾近似演算法(Gaussian Approximation of Interference, GAI)的演算法,把其他使用者所造成的干擾量模擬成高斯分佈,我們的複雜度可以從原本的指數成長降低成線性成長且維持近乎相同的效能。
Abstract
Sparse code multiple access (SCMA) is proposed for 5th generation mobile networks. Because SCMA has good spectrum efficiency. Each user is assigned a SCMA codebook, which is made of codeword. The user’s information bits are directly encoded to codewords selected from a predefined codebook set. The selected codeword will overlapped at the receiver resulting in seriously multiple user interference. Therefore, we apply Sparse Gaussian Integer Perfect Sequence to design SCMA codebook. In order to improve the performance of multiple user detector, our target is to make the minimum Euclidean distance between every codeword selected by different user maximized. In the other hand, we use the properties of SGIPS that we construct codebook in frequency domain and the sequence is maintained equal amplitude in the corresponding time domain resulting in low peak to average power ratio. Because the codewords from different user will combined each other, we decode the message by SCMA decoder. But the complexity of traditional SCMA decoder will increase exponentially when both the size of codebook and the number of user. We proposed Gaussian Approximation of Interference algorithm to design receiver and model the interference as Gaussian distribution. By this way, we could reduce the complexity efficiently.
目次 Table of Contents
目錄
論文審定書 i
公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 x
第一章 導論 1
1.1 研究動機 4
1.2 論文架構 4
第二章 系統模型 5
2.1正交分頻多工系統之基本架構 5
2.2多載波分碼多重存取之基本架構 9
2.3低密度分碼多重存取之基本架構 11
2.4稀疏分碼多重存取之基本架構 12
第三章 碼簿設計 14
3.1碼簿設計 14
3.2使用稀疏高斯完美整數序列之碼簿設計方法 15
第四章 接收端設計 23
4.1 SCMA估測器設計 23
4.2 GAI估測器設計 24
4.3 複雜度比較 28
第五章 模擬結果與討論 29
5.1 Smooth Factor與Cross Entropy收斂值關係 29
5.1 SCMA 接收機 與GAI 接收機效能比較 32
5.2 峰均值功率比 34
5.3 錯誤率比較 36
第六章 結論 38
參考文獻 39
中英對照表 44
縮寫對照表 50

圖次
圖2-1 多載波系統 6
圖2-2 傳統OFDM 傳送端 6
圖2-3 傳統OFDM 接收端 7
圖2-4 S/P 轉換示意圖 7
圖2-5 使用IDFT之等效OFDM傳送端 9
圖2-6 MC-CDMA系統傳送端架構圖 10
圖2-7 MC-CDMA系統接收端架構圖 10
圖2-8 LDS 系統架構圖 12
圖2-9 LDS 展頻碼示意圖 12
圖2-10 SCMA 上鏈傳輸系統架構圖 13
圖2-11 SCMA碼簿構造 13
圖3-1 不同的旋轉係數組合 20
圖3-2 不同的位移係數組合 20
圖3-3 長度為16與使用者數量為24的GI-SCMA碼簿 21
圖3-4 長度為32與使用者數量為48的GI-SCMA碼簿 22
圖4-1 GAI估測器設計FACTOR GRAPH 25
圖4-2 GAI估測器設計演算法 25
圖5-1 兩組基底序列與SMOOTH FACTOR 31
圖5-2 四組基底序列與SMOOTH FACTOR 31
圖5-3 SCMA CODEBOOK 33
圖5-4 SCMA接收機與GAI接收機效能比較 34
圖5-5 兩組基底序列的PAPR比較 35
圖5-6 四組基底序列的PAPR比較 35
圖5-7 兩組基底序列與LDS比較 37
圖5-8 四組基底序列與LDS比較 37

表次
表 3-1 兩組基底序列之不同位移係數間重疊關係 19
表 3-2 四組基底序列之不同位移係數間重疊關係 19
參考文獻 References
[1] K. Minoru and S. Masaaki, “Second generation mobile radio telephone system in Japan,” IEEE Commun. Mag., vol. 24, no. 2, pp. 16–21, Feb. 1986.
[2] G. Brasche and B. Walke, “Concept, services, and protocols of the new GSM phase 2+ general packet radio service,” IEEE Commun. Mag., vol. 35, no. 8, pp. 94–104, Aug. 1997.
[3] C. Drane, M. Macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Commun. Mag., vol. 36, no. 4, pp. 46–54, Apr. 1998.
[4] K. I. Kim, “CDMA cellular engineering issues,” IEEE Trans. Veh. Technol., vol. 42, no. 3, pp. 345–350, Aug. 1993.
[5] J. S. Lee and M. E. Miller, “Analysis of peak-to-average power ratio for IS-95 and third generation CDMA forward link waveforms,” IEEE Trans. Veh. Technol., vol. 50, issue 4, pp. 1004–1013, July 2001.
[6] V. K. Grag, IS-95 CDMA and CDMA2000: Cellular/PCS Systems Implementation, 1st ed. London, Pearson, 2000.
[7] A. J. Viterbi, CDMA: Principle of Spread Spectrum Communication, Addison Wesley, 1995.
[8] H. Honkasalo, K. Pehkonen, M. T. Niemi, and A. T. Leino, “WCDMA and WLAN for 3G and beyond,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 14–18, Apr. 2002.
[9] D. N. Knisely, S. Kumar, S. Laha, and S. Nanda, “Evolution of wireless data service: IS-95 to cdma2000,” IEEE Commun. Mag., vol. 36, issue 10, pp. 140–149, Oct. 1998.
[10] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next generation wireless broadband technology,” IEEE Wireless Commun., vol. 17, issue 3, pp. 10–22, June 2010.
[11] J. Gozalvez, “South Korea launches LTE-advanced,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 10–27, Mar. 2014.
[12] L. J. Cimini, “Analysis and simulation of a mobile radio channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no. 7, pp. 665–675, July 1985.
[13] Y. Wu and W. –Y. Zou, “Orthogonal frequency division multiplexing: a multi-carrier modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392–399, Aug. 1995.
[14] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun. Mag., vol. 35, no. 12, pp.126–133, Dec. 1997.
[15] A. C. McCormick and E. A. AI-Susa, “Multicarrier CDMA for future generation mobile communication,” IEEE Electron. & Commun. Eng., vol. 14, no. 5, pp.52–60, Apr. 2002.
[16] H. –H. Chen, J. –F. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications,” IEEE Commun. Mag., vol. 39, no. 10, pp. 126–135, Oct. 2001.
[17] N. Yee, J. P. M. G. Linnartz, and G. Fettweis, “Multi-carrier CDMA in indoor wireless radio networks,” in Proc. IEEE Int. Symp. Personal Indoor and Mobile Radio Communications (PIMRC), Yokohama, Japan, pp. 109–113, Sep. 1993.


[18] L. Dai, B. Wang, Y. Yuan, S. Han, C. –L. I, and Z. Wang, ”Non-orthogonal multiple access for 5G: Solutions, Challenges, opportunities, and future research trends,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013.
[19] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for future radio access,” in Proc. IEEE VTC, pp. 1-5, June 2013.
[20] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-Density Signature for Synchronous CDMA Systems Over AWGN Channel,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1616-1626, Apr. 2008.
[21] R. Razavi, R. Hoshyar, and M. AI-Imari, “LDS-OFDM an efficient multiple access technique,” IEEE Trans. Commun. vol. 60. no. 11, pp. 3499-3508, Nov. 2012.
[22] N. Hosein and B. Hadi, “Sparse code multiple access,” in Proc. IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Sep. 2013, pp. 332-336.
[23] H. Nikopour, E. Yi, A. Bayesteh, K. Au, M. Hawryluck, H. Baligh, and J. Ma, “SCMA for downlink multiple access of 5G wireless networks,” in Proc. IEEE GLOBECOM, 2014, pp. 3940-3945.
[24] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA codebook design,” in Proc. IEEE VTC Fall 2014, Sep. 2014, pp. 1-5.
[25] M. Beko and R. Dinis, “Designing good multi-dimensional constellations,” IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 221-224, June 2012.
[26] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1561-1585, Apr. 2008.


[27] G. D. Forney and L. –F. Wei, “Multidimensional Constellations-Part I : Introduction,Multidimensional Constellations-Part I : Introduction, Figure of Merit, and Generalized Cross Constellations,” IEEE J. Sel. Areas Commun, vol. 7, no. 6, pp. 877-892, Aug. 1989.
[28] W. –W. Hu, S. –H. Wang, and C. –P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60,no. 11, pp. 4006–4016, Nov. 2012.
[29] S. –H. Wang, J. –C. Sie, C. –P. Li, and Y. –F. Chen, “A low-complexity PAPR reduction scheme for OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242-1251, Apr. 2011.
[30] W. –C. Huang, Y. –S. Yang, and C. –P. Li, “A New Pilot Architecture for Sub-band Uplink OFDMA Systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461-470, Sep. 2013.
[ 31] Y. –S. Yang, W. –C. Huang, C. –P. Li, H, –J, Li, and G. L. Stuber, “A Low-Complexity Transceiver Structure With Multiple CFOs Compensation for OFDM-Based Coordinated Multi-Point Systems, ” IEEE Trans. Commun., vol. 63, no. 7, pp. 2658-2670, July 2015.
[32] W. –C. Huang, C. –H. Pan, C. –P. Li, and H. –J. Li, “Subspace-Based Semi-Blind Channel Estimation in Uplink OFDMA Systems,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 58-63, Mar. 2010.
[33] W. –C. Huang, C. –P. Li, and H. –J. Li, “On the Power Allocation and System Capacity of OFDM Systems Using Superimposed Training Schemes,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1731-1740, May 2009.


[34] W. –C. Huang, C. –P. Li, and H. –J. Li, “An investigation into the noise variance and the SNR estimators in imperfectly-synchronized OFDM systems ” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 1159-1167, Mar. 2010.
[ 35] S. –H. Wang, C. –P. Li, H. –H. Chang, and C. –D. Lee, “A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Commun., vol. 64, no. 1, pp. 365-376, Jan. 2016.
[36] S. –H. Wang, K. –C. Lee, and C. –P. Li, “A low-complexity architecture for PAPR reduction in OFDM systems with near-optimal performance,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 169-179, Jan. 2016.
[37] H. –H. Chang, C. –P. Li, C. –D. Lee, S. –H. Wang, and T. –C. Wu, “Perfect Gaussian integer sequences of arbitrary composite length,” IEEE Trans. Inf. Theory, vol. 61, no. 7, pp. 4107-4115, July 2015.
[38] L. Wang and C. Tellambura, “Cross entropy based sign selection algorithms for peak-to-average power ratio reduction of OFDM systems,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4990-4994, Oct. 2008.
[39] Y. Wu, S. Zhang and Y. Chen, “Iterative multiuser receiver in sparse code multiple access systems,” in Proc. IEEE ICC, June 2015, pp. 2918-2923.
[40] D. Wei, Y. Han, S. Zhang, and L. Liu, “Weight Message Passing Algorithm for SCMA,” in Proc. IEEE Wireless Commun. Signal Process., pp. 1-5, Oct. 2015.
[41] T. L. Narasimhan, P. Raciteja, and A. Chockalingam, “Generalized spatial modulation in large-scale multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3764-3779, July 2015.
[42] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code