Responsive image
博碩士論文 etd-0722116-113151 詳細資訊
Title page for etd-0722116-113151
論文名稱
Title
以複合型碳源基質加強1,2-二氯乙烷之厭氧降解成效
Application of carbon-substrate complex to enhance the anaerobic biodegradation of 1,2-dichloroethane
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-22
關鍵字
Keywords
1、加強式生物整治、2-二氯乙烷、生物多樣性、還原脫氯、地下水生物
1, enhanced bioremediation, microbial diversity, reductive dechlorination, groundwater bioremediation, 2-dichloromethane
統計
Statistics
本論文已被瀏覽 5677 次,被下載 0
The thesis/dissertation has been browsed 5677 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑廣泛應用於工業製程中電子零件清洗、脫脂及乾洗等,但處理
不當便造成土壤及地下水污染,其屬於重質非水相溶液污染物(dense non-aqueous
phase liquid, DNAPL)在土壤與地下水中最常見之 DNAPL 含氯有機溶劑,其中 1,2-
二氯乙烷(1,2-dichloroethane, 1,2-DCA)是具代表性之含氯有機溶劑之一。目前對於
受含氯有機物污染之土壤及地下水場址常利用加強式生物整治(enhanced
bioremediation)技術,此技術主要將生物可利用基質注入土壤及地下水中,藉此刺
激現地微生物生長並營造適合厭氧還原脫氯菌群,提升污染整治成效。因此,本
研究目的以複合型碳源基質加強 1,2-二氯乙烷之厭氧降解成效,利用自行研發之
BS-1 與國外市售 C-Mix 兩種複合性碳源基質,進行加強式生物整治受氯化有機物
1,2-二氯乙烷污染場址,比較其含氯有機物降解效果,並以降解效果較佳之基質進
行管柱試驗,此外,於過程中監測地下水環境參數以及菌相之變化。在厭氧批次
試驗結果顯示,添加 BS-1 基質(B 組)與 C-Mix(M 組)基質能迅速達到厭氧還原狀
態,其總有機碳可提供微生物營養鹽。B 組在 93 天的批次試驗中,pH 穩定維持在
微生物最適生長條件(6.5-7.5 之間),並能有效降解氯化有機物 1,2-二氯乙烷污染(去
除率達 99%)﹔M 組監測初期 pH 值酸化之情形,在實驗期間 1,2-二氯乙烷之降解
效果較 B 組緩慢。管柱試驗結果,注入 BS-1 基質之管柱 1,2-二氯乙烷能有效降解
至 0.1 mg/L,監測至第 8 天時,下游管柱 3 其 1,2-二氯乙烷濃度降解至低於法規標
準濃度 0.05 mg/L(其管柱初始濃度為 136 mg/L,流速 0.1 L/day)。B 組在厭氧批次
試 驗 生 物 多 樣 性 分 析 結 果 發 現 厭 氧 產 氫 菌 Clostridium sp. 及 Uncultured
Desulfitobacterium sp. clone E15 bac , 硫酸鹽還原 (sulfate reduction) 菌 種
Sulfate-reducing bacterium LZK1、Desulfovibrio psychrotolerans strain JS1、Delta
proteobacterium K2-52、Desulfovibrio sp. SKKL8。本研究顯示利用 BS-1 基質作為
加強式生物整治能有效提高降解效率,此外亦可使現地微生物大量生長,BS-1 基
質不會造成地下水酸化,且可供應現地微生物生長之營養鹽降解目標污染物,並
符合綠色整治減少二次污染,本研究之效果以提供未來相關整治場址之參考依據。
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) are frequently found as contaminants
of soil and groundwater as a result of their widespread use in various industrial
processes and improper disposal methods. When they are released into the subsurface,
they tend to adsorb onto the soils and cause the appearance of DNAPL
(dense-non-aqueous phase liquid) pool. The 1,2-dichloroethane (1,2-DCA or EDC) has
been shown on induces hepatocellular carcinogens in mice and is a human carcinogen.
Application of in situ anaerobic bioremediation is a feasible technology to remediate
DNAPL site. In situ anaerobic bioremediation of chlorinated compounds (e.g.,
1,2-DCA) requires the injection of primary substrates to enhance the reductive
dechlorination process of chlorinated compounds. In this study, 1,2-DCA was used as
the target compound. The main objective was to compare the effectiveness of using
BS-1 (brand name) (developed for continuous carbon release) and commercially
available substrate C-Mix (brand name) (a carbon-substrate complex) on 1,2-DCA
dechlorination under anaerobic conditions. Results from the microcosm study show that
the pH in microcosms with BS-1 supplement remained in neutral (in the range from 6.5
to 7) throughout the experiment (93 days of operation). Approximately 99% of
1,2-DCA could be removed when BS-1 was added in the system. However, in
microcosms using C-Mix as the primary substrate, significant pH drop was observed.
Results from the column experiment show that 1,2-DCA can be degraded to below 0.05
mg/L (with initial concentration of 136 mg/L, flow rate of 0.1 L/day, and detention time
of 8 days) with the addition of BS-1 as the substrate. Results of the microbial diversity
analyses for the BS-1 microcosm show that the following bacteria were observed:
hydrogen-producing bacteria Clostridium sp., uncultured Desulfitobacterium sp. Clone
E15 bac, sulfate reduction species Sulfate-reducing bacterium LZK1, Desulfovibrio
psychrotolerans strain JS1, Delta proteobacterium K2-52, and Desulfovibrio sp.
SKKL8. Results from his study demonstrate that BS-1 can serve as the primary
substrate to enhance the reductive dechlorination of 1,2-DCA effectively.
目次 Table of Contents
誌謝...................................................................................................................................i
摘要..................................................................................................................................ii
ABSTRACT ................................................................................................................... iii
目錄................................................................................................................................ iv
圖目錄...........................................................................................................................vii
表目錄............................................................................................................................ ix
第一章 前言.................................................................................................................... 1
1.1 研究緣起 ......................................................................................................... 1
1.2 研究目的 ......................................................................................................... 2
第二章 文獻回顧............................................................................................................ 3
2.1 含氯碳氫化合物污染概況 ............................................................................. 3
2.1.1 含氯碳氫化合物之污染概況 ................................................................. 3
2.1.2 1,2-二氯乙烷之性質與管制標準............................................................ 7
2.1.3 1,2-二氯乙烷之傳輸行為與機制...........................................................11
2.2 土壤與地下水整治技術............................................................................... 13
2.2.1 地下水生物整治技術 ........................................................................... 15
2.2.2 綠色整治技術 ....................................................................................... 17
2.3 目標污染物 1,2-二氯乙烷降解機制............................................................ 20
2.3.1 1,2-二氯乙烷之好氧生物分解.............................................................. 20
2.3.2 1,2-二氯乙烷之厭氧生物分解.............................................................. 21
2.4 利用各種碳源做為厭氧還原脫氯作用之探討........................................... 23
2.5 以生物整治工法有效控制地下水 PH 值 .................................................... 26
V
2.6 分子生物技術應用於地下水整治 ............................................................... 29
第三章 實驗設備與方法.............................................................................................. 31
3.1 研究架構流程圖........................................................................................... 31
3.2 實驗設計....................................................................................................... 32
3.2.1 前導試驗 ................................................................................................ 32
3.2.2 批次試驗 ............................................................................................... 32
3.2.3 管柱實驗 ............................................................................................... 34
3.3 實驗材料與設備........................................................................................... 35
3.3.1 實驗試藥 ............................................................................................... 35
3.3.2 實驗儀器與設備 ................................................................................... 35
3.3.3 供試之土壤、地下水及污泥來源 ....................................................... 36
3.3.4 供試之基質來源 ................................................................................... 37
3.4 實驗分析方法............................................................................................... 38
3.4.1 水質分析 ............................................................................................... 38
3.5 分子生物技術............................................................................................... 41
3.5.1 微生物之 DNA 萃取............................................................................. 41
3.5.2 聚合酶鏈鎖反應 (polymerase chain reaction, PCR) ........................... 42
3.5.3 DNA 純化............................................................................................... 43
3.5.4 變性梯度膠體電泳(Denaturing gradient gel electrophoresis, DGGE).. 44
第四章 結果與討論...................................................................................................... 46
4.1 流通性試驗 ................................................................................................... 46
4.1.1 穩定性試驗 ............................................................................................ 48
4.2 酸化試驗....................................................................................................... 50
4.3 厭氧微生物批次試驗 ................................................................................... 53
4.3.1 pH 與鹼度............................................................................................... 53
VI
4.3.2 溶氧與氧化還原電位 ............................................................................ 55
4.3.3 硫酸鹽與硫化物 .................................................................................... 57
4.3.4 總有機碳與 1,2-二氯乙烷..................................................................... 59
4.3.5 甲烷與乙烯 ............................................................................................ 62
4.4 厭氧批次試驗菌相分析結果....................................................................... 64
4.4.1 變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE) . 64
4.4.2 批次實驗之菌種鑑定 ........................................................................... 66
4.5 管柱污染物降解試驗 ................................................................................... 72
4.5.1 水質參數(pH 值、氧化還原電位及導電度)........................................ 73
4.5.2 總有機碳、總生菌數、1,2-二氯乙烷及甲烷...................................... 76
4.5.3 硫酸鹽及硫化物 .................................................................................... 79
4.5.4 總鐵及亞鐵 ............................................................................................ 81
第五章 結論與建議...................................................................................................... 83
5.1 結論 ............................................................................................................... 83
5.2 建議 ............................................................................................................... 85
參考文獻........................................................................................................................ 86
參考文獻 References
行政院勞工委員會 (2010),勞工法令查詢。
梁書豪、郭育嘉、連博仁、簡華逸、高志明 (2012) “地下水污染之整治技術介紹”,
環保資訊月刊,第 170 期。
郭育嘉(2013),應用現地乳化油生物屏障處理受含氯有機物污染之地下水,國立中
山大學環境工程研究所 博士論文。
陳谷汎、高志明 (2002),土壤及地下水物理/化學復育技術,台灣土壤及地下水環
境保護協會簡訊,第 5 期,第 3-5 頁(2002)。
陳逸明(2010),以乳化型基質處理受三氯乙烯污染之地下水,國立中山大學環境工
程研究所。
經濟部工業局 (2003),工廠土壤與地下水整治技術手冊-石化業。
經濟部工業局(2004),土壤與地下水污染整治技術手冊-生物處理技術。。
經濟部工業局(2008),含氯碳氫化合物土壤及地下水污染防預與整治技術手冊。
廖偉筑(2007),結合觸媒氧化及高級氧化以處理含氯揮發性有機污染物之研究,碩
士論文,國立台灣大學,環境工程學研究所,台北。
劉瑋晨(2009),以基因分析法評估三氯乙烯污染地下水之微生物整治成效,國立中
山大學 環境工程研究所 碩士論文。
蔡在唐、高志明、葉琮裕、陳明華(2008)「利用整治列車系統處理含氯有機污染之
地下水」,台灣土壤及地下水環境保護協會簡訊,第 28 期,第 3-15 頁。
環保署(2010d),毒理資料庫查詢, ttp://flora2.epa.gov.tw/prog/database.asp, Accessed
23 June 2010.
環保署(2012),列管廠址查詢,http://sgw.epa.gov.tw/public/0401.asp
環保署(2014),103 年度土壤及地下水污染整治年報,第 5-21 頁。
Adamson, D.T., Lyon, D.Y., Hughes, J.B. (2004). Flux and product distribution during
biological treatment of tetrachloroethene dense non-aqueous-phase liquid.
Environmental science & technology, 38(7), 2021-2028.
Amann, R.I., Ludwig, W., Schleifer, K.H. (1995). Phylogenetic identification and in
situ detection of individual microbial cells without cultivation. Microbiological
reviews, 59(1), 143-169.
87
Amos, B.K., Suchomel, E.J., Pennell, K.D. and Löffler, F.E. (2009). Spatial and
temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during
bioenhanced PCE-NAPL dissolution. Environmental science & technology, 43(6),
1977-1985.
Arcadis, (2002). Technical Protocol for Using Carbohydrates to Enhance Reductive
Dechlorination of Chlorinated Aliphatic Hydrocarbons. Report prepared for
ESTCP (Contract # F41624-99-C-8032).
Baek, K., Mao, X., Ciblak, A., Alshawabkeh, A.N. (2012). Green Remediation of Soil
and Groundwater by Electrochemical Methods. In GeoCongress 2012@ sState of
the Art and Practice in Geotechnical Engineering, 4348-4357, ASCE.
Baran R, Kaminska II, Srebowata A, Dzwigaj S. Selective hydrodechlorination of
1,2-dichloroethane on NiSiBEA zeolite catalyst: influence of the preparation
procedureon a high dispersion of Ni centers. Microporous Mesoporous Mater
2013;169:120–7.
Bin, W., Huiying, L., , Xiaoming, D., Lirong, Z., Bin, Y., Ping, D., Qingbao, G.,
Fasheng, L. (2016) Correlation between DNAPL distribution area and dissolved
concentration in surfactant enhanced aquifer remediation effluent:
Atwo-dimensional flow cell study. Chemosphere, 144, 2142–2149.
Borden, R.C. (2007). Effective distribution of emulsified edible oil for enhanced
anaerobic bioremediation. Journal of Contaminant Hydrology, 94(1), 1-12.
Borden, R.C., Raleigh, N.C. (2011). In situ pH adjustment for solid and publication
groundwater remediation. United States Patent Application Publication, Pub. NO.:
US2011/0139695 A1.
Borden, R.C., Rodriguez, B.X. (2006). Evaluation of slow release substrates
foranaerobic bioremediation. Bioremediation Journal, 10, 59-69
Bouwer, E.J. 1994. Bioremediation of Chlorinated Solvents Using Alternate Electron
Acceptors. In Norris, R.D., R.E. Hinchee, R. Brown, P.L McCarty, L. Semprini,
J.T. Wilson, D.H. Kampbell, M. Reinhard, E.J. Bouwer, R.C. Borden, T.M. Vogel,
J.M. Thomas, and C.H.Ward (Eds), Handbook of Bioremediation. 149-175. Lewis
Publishers.
Cerqueira, V.S., Maria do Carmo, R.P., Camargo, F.A., Bento, F.M. (2014).
Comparison of bioremediation strategies for soil impacted with petrochemical oily
sludge. International Biodeterioration & Biodegradation, 95, 338-345.
88
Chang, D., Siyan, Z., Jianzhong, H. (2014). A Desulfitobacterium sp. strain PR
reductively dechlorinates both 1,1,1-trichloroethane and chloroform,
Environmental Microbiology (2014) 16(11), 3387–3397
Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition ofanaerobic digestion
process: a review. BioresourceTechnology, 99, 4044 – 4064.
Chu, M., Kitanidis, P.K., McCarty, P.L. (2004). Possible factors controlling the
effectiveness of bioenhanced dissolution of non-aqueous phase tetrachloroethene.
Advances in water resources, 27(6), 601-615.
Cline, D.M., Jackson, P.J.W., Collins III., M.(2005). KOH Injections in Low-pH
Aquifers to Enhance Anaerobic Degradation. In: Allerman, B. C. and M. E. Kelly
(Conf. Chairs). Proceedings of the Eight International In Situ and On-Site
Bioremediation Symposium (Baltimore, Md., Jun. 6-9, 2005). ISBN
1-57477-152-3, Battelle Press, Columbus, Ohio.
Cope N. and J.B. Hughes. 2001. Biologically-enhanced removal of PCE from NAPL
source zones. Environmental Science and Technology. 35:2014-2021.
De Biase, C., Maier, U., Baeder‐Bederski, O., Bayer, P., Oswald, S. E., Thullner, M.,
(2012). Removal of volatile organic compounds in vertical flow filters: Predictions
from reactive transport modeling. Ground Water Monitoring & Remediation,
32(2), 106-121.
Deutsch, W.1., Dooley, M., Koenigsburg, S., Butler, B., Dobbs, G. (2002). In Situ
Redox Manipulation for Arsenic Remediation. In: Proceedings of the Third
International Conference on Remediation of Chlorinated and Recalcitrant
Compounds (Monterey, Calif. May 20-23, 2002.) ISBN 1-57477-132-9, Battelle
Press, Columbus, Ohio.
Diana, P.r, Jofre, H., Mònica, T., Amparo, C., Ivonne, N., Kevin, K., Beth, L. P. José,
M. C. (2016) Reductive dechlorination in recalcitrant sources of chloroethenes in
the transition zone between aquifers and aquitards. Environmental Science and
Pollution Research , pp 1-18.
Dinglasan-Panlilio, M.J., Dworatzek, S., Mabury, S.A., and Edwards, E.A. (2006)
“Microbial oxidation of 1,2-dichlorethane under anoxic conditions with nitrate as
electron acceptor in mixed and pure cultures”, FEMS Microbiol. Ecol. 56,
355-364.
89
Duan, J., Huo, X., Du, W.J., Liang, J.D. , Wang, D.Q., Yang, S.C.(2015).
Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain,
Acetoanaerobium sp. WJDL-Y2. Issue Letters in Applied Microbiology Letters in
Applied Microbiology, 62, 55–62.
Eaddy, A. (2008). Scale-up and characterization of an enrichment culture for
bioaugmentation of the P-area chlorinated ethene plume at the Savannah River site.
ProQuest.
Egli, C., Scholtz, R., Cook, A.M., Leisinger, T., 1987. Anaerobic dechlorination of
tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures
of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43 (3),
257-261.
Falta, R.W., (2004). The potential for ground water contamination by the gasoline lead
scavengers ethylene dibromide and 1,2-dichloroethane. Ground Water Monit.
Remediat. 24, 76-87.
Field and Sierra-Alvarez, (2004) Field JA, Sierra-Alvarez R: Biodegradability of
chlorinated solvents and related chlorinated aliphatic compounds. Reviews in
Environ Sci & Bio/Technol 2004, 3: 185–254.
Fitts (2013) “Groundwater Contamination”, Groundwater Science (Second Edition),
499–585.
Frascari, D., Zanaroli, G., Danko, A.S. (2015). In situ aerobic cometabolism of
chlorinated solvents: A review. Journal of hazardous materials, 283, 382-399.
Giuseppe, M., Annalisa, B., Massimo, M., Francesca, M., Aurora, R., Davide,
L., Francesca, D. F.,Giovanna, C., Daniele, D. (2015) Diverse Reductive
Dehalogenases Are Associated with Clostridiales-Enriched Microcosms
Dechlorinating 1,2-Dichloroethane. BioMed Research International, Volume 2015,
11 pages.
Gwinn MR, Johns DO, Bateson TF, Guyton KZ. A review of the genotoxicity of
1,2-dichloroethane (EDC). Mutat Res 2011;727:42–53.
Hage, J.C., and Hartmans, S. (1999) “Monooxygenase mediated 1,2-dichloroethane
degradation by Pseudomonas sp. strain DCA1”, Applied and Environmental
Microbiology, 65, 2466-2470.
90
Harkness, M., Fisher, A. (2013). Use of Emulsified Vegetable Oil to Support
Bioremediation of TCE DNAPL in Soil Columns. Journal of contaminant
hydrology.
Hartmans, S., De Bont, J.A. (1992). Aerobic vinyl chloride metabolism in
Mycobacterium aurum L1. Applied and Environmental Microbiology, 58(4),
1220-1226.
Hazen, T.C., Chakraborty, R., Fleming, J.M., Gregory, I.R., Bowman, J.P., Jimenez, L.,
Zhang, D., Pfiffner, S.M., Brockman, F.J., Sayler, G.S. (2009). Use of gene
probes to assess the impact and effectiveness of aerobic in situ bioremediation of
TCE. Archives of microbiology, 191(3), 221-232.
Hirschorn, S.K., Dinglasan-Panlilio, M.J., Edwards, E.A., Lacrampe-Couloume, G. and
Lollar, B.S. (2007) “Isoope analysis as a natural reaction probe to determine
mechanisms of biodegradation of 1,2-dichloroethane”, Environmental
Microbiology, 9, 1651-1657.
Holliger, C., Schraa, G., Stams, A.J., Zehnder, A.J. (1993). A highly purified
enrichment culture couples the reductive dechlorination of tetrachloroethene to
growth. Applied and Environmental Microbiology, 59(9), 2991-2997.
Hong, Y., Reible, D.D. (2014). Modeling the Effect of pH and Salinity on
Biogeochemical Reactions and Metal Behavior in Sediment. Water, Air, & Soil
Pollution, 225(1), 1-20.
Hunkeler, D. and Aravena, R. (2000) “Evidence of substantial carbon isotope
fractionation among substrate, inorganic carbon, and biomass during aerobic
mineralization of 1,2-dichloroethane by Xanthobacter autotrophicus”, Applied and
Environmental Microbiology, 66, 4870-4876.
Iva, D., Marie, C., Luk, D., Vojtech, S., Alena, S., Miroslav, C. (2016) Dynamics of
organohalide-respiring bacteria and their genes following in-situ chemical
oxidation of chlorinated ethenes and biostimulation. Chemosphere,157 ,276-285.
Jennings, L.K., Giddings, C.G., Gossett, J.M., Spain, J.C. (2013). Bioaugmentation for
Aerobic Degradation of CIS-1, 2-Dichloroethene. In Bioaugmentation for
Groundwater Remediation, 199-217.
Jian, M., Yongming, L., Ying, T., Zhengao, L.(2012).Bioremediation of polycyclic
aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated
microbial community changes, International Biodeterioration & Biodegradation,
70(2012), 141–147
91
Jin, Y.O., Mattes, T.E. (2008). Adaptation of aerobic, ethene-assimilating
Mycobacterium strains to vinyl chloride as a growth substrate. Environmental
science & technology, 42(13), 4784-4789.
Jordi, P., Pierre, J., Alice, B., Nicola,s V., Bruno, H., Serge, B., Daniel, H.(2016) Use of
dual carbon–chlorine isotope analysis to assess the degradation pathways of
1,1,1-trichloroethane in groundwater. Water Research, Volume 92, 1, April 2016,
Pages 235–243.
Kasenow, M. (2010) Applied Ground-Water Hydrology and Well Hydraulics (3 rd
Ed). Water Resources Publns. Highlands Ranch, CO.
Kimberly, S. B., Fred, A.R., William, M.M. (2009) Production of hydrogen by
Clostridium species in the presence of chlorinated solvents. FEMS Microbiol Lett
290 (2009) 188–194.
Kouznetsova, I., Mao, X., Robinson, C., Barry, D. A., Gerhard, J.I., McCarty, P.L.
(2010). Biological reduction of chlorinated solvents: Batch-scale geochemical
modeling. Advances in Water Resources, 33(9), 969-986.
Kueper BH. (1996), Unpublished. Queen’s University, Kingston, ON, Canada.
Kuo, Y.C., Liu, J.K., Chien, H.Y., Chen, C.C, Kao, C.M. (2012).Remediation of
TCE-contaminated groundwater using integrated biosparging and enhanced
bioremediation system. Research Journal of Chemistry and Environment, 16(2).
Lalande, J., Villemur, R., Deschênes, L. (2013). A New Framework to Accurately
Quantify Soil Bacterial Community Diversity from DGGE. Microbial ecology,
1-12.
Lee, M.H., Clingenpeel, S.C., Leiser, O.P., Wymore, R.A., Sorenson Jr, K.S.,
Watwood, M.E. (2008). Activity-dependent labeling of oxygenase enzymes in a
trichloroethene-contaminated groundwater site. Environmental Pollution,153(1),
238-246.
Lee, W., Batchelor, B. (2002). AbioticReductive Dechlorination of Chlorinated
Ethylenes by Iron-Bearing Soil Minerals. Environmental Science and Technology,
36, 5348-5354.
Liang, S.H., Kuo, Y.C., Chen, S.H., Chen, C.Y., Kao, C.M. (2013). Development of a
slow polycolloid-releasing substrate (SPRS) biobarrier to remediate
TCE-contaminated aquifers. Journal of hazardous materials.
Liu, T., Ahn, H., Sun, W., McGuinness, L.R., Kerkhof, L.J., Häggblom, M.M.(2016)
Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether
92
(MTBE) Degrading Bacterium in a Methanogenic Consortium. Environ Sci
Technol. 2016 Feb 2;50(3):1455-64. doi: 10.1021/acs.est.5b04731. Epub 2016 Jan
15.
Long, C.M., Borden, R.C. (2006). Enhanced reductive dechlorination in columns
treated with edible oil emulsion. Journal of contaminant hydrology, 87(1), 54-72.
Lucia, Ž., Tomáš, V., Adina, H., Petr, B. (2016) Microbial activity in forest soil reflects
the changes inecosystem properties between summer and winter. Environmental
Microbiology (2016),Volume 18, Issue 1,January, 2016 ,Pages 288–301.
Lutes, C.C., Frizzell, A., Suthersan, S.S. (2006). Enhanced Reductive Dechlorination of
CAHs using Soluble Carbohydratesi A Summary of Detailed Data from 50 Sites.
In: Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated
Solvents, Appendix E. AFCEE/NFESC/ESTCP, Brooks City-Base, TX. August
2004.
Majone, M., Verdini, R., Aulenta, F., Rossetti, S., Tandoi, V., Kalogerakis, N., Agathos,
S., Puig, S., Zanaroli, G., Fava, F., (2015). In situ groundwater and sediment
bioremediation: barriers and perspectives at European contaminated sites. New
Biotechnol. 32, 133–146.
Marie Schmidt, Sascha Lege, Ivonne Nijenhuis (2014) “Comparison of
1,2-dichloroethane, dichloroethene and vinyl chloride carbon stable isotope
fractionation during dechlorination by two Dehalococcoides strains” water
research, 52,146-154.
Marzorati M, Borin S, Brusetti L, Daffonchio D, Marsilli C, Carpani G, de Ferra F.
(2006) “Response of 1,2-dichloroethane-adapted microbial communities to ex-situ
biostimulation of polluted groundwater”, Biodegradation, 17, 41-56.
Marzorati, M., Balloi, A., de Ferra, F., Corallo, L., Carpani, G., Wittebolle, L.,
Verstraete, W. and Daffonchio, D. (2010) “Bacterial diversity and reductive
dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium
enriched from a contaminated aquifer”, Microbial Cell Factories.
Matthias,H.B., Anja, P., Frank, R.B., Bettina,S.B., Rolf, D., Peter, D.(2015).Draft
Genome Sequence of the Strict Anaerobe Clostridium homopropionicum LuHBu1
(DSM 5847). Genome Announc. 2015 Sep-Oct; 3(5): e01112-15.
McCarty, P.L., Chu, M.Y., Kitanidis, P.K. (2007). Electron donor and pH relationships
for biologically enhanced dissolution of chlorinated solvent DNAPL in
groundwater. European Journal of Soil Biology, 43(5), 276-282.
93
McLean, J.E., Ervin, J., Zhou, J., Sorensen, D.L., Dupont, R.R. (2015). Biostimulation
and Bioaugmentation to Enhance Reductive Dechlorination of TCE in a Long‐
Term Flow Through Column Study. Groundwater Monitoring & Remediation.
Meckenstock, R.U., Elsner, M., Griebler, C., Lueders, T., Stumpp, C., Dejonghe, W.,
Van Breukelen, B.M. (2015). Biodegradation: Updating the concepts of control for
microbial clean-up in contaminated aquifers. Environmental science & technology.
Meriah, A.Y. and Bradley, M.T.(2003). Cr(VI) Reduction by Sulfidogenic and
Nonsulfidogenic Microbial Consortia. APPLIED AND ENVIRONMENTAL
MICROBIOLOGY, Mar. 2003, p. 1847–1853.
Michael R. F. (2016) Iron-Induced Reductive Dechlorination: A Sustainable Remedial
Strategy To Cleanup Legacy Dieldrin Impacted Groundwater- A Review.
Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., Sekiguchi, Y.
and Noda, N. (2010) “Quantitative Detection of Chloroethene-reductive Bacteria
Dehalococcoides spp. Using Alternately Binding Probe Competitive Polymerase
Chain Reaction”, Molecular and Cellular Probes, 24, 131-137.
Mundle, S.O., Johnson, T., Lacrampe-Couloume, G., Pérez-de-Mora, A., Duhamel, M.,
Edwards, E.A., Sherwood Lollar, B. (2012). Monitoring biodegradation of ethene
and bioremediation of chlorinated ethenes at a contaminated site using
compound-specific isotope analysis (CSIA). Environmental science & technology,
46(3), 1731-1738.
Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann R.I., Ludwig, W.,
and Backhaus, H. (1996) Sequence heterogeneities of genes encoding 16S rRNAs
in paenibacillus polymyxa detected by temperature gradient gel electrophoresis,
Journal of Bacteriology, V.178, n.19, p.5636-5643.
Nuria, F., Sébastien, C., Sabine, T., Aurélie, L., Jan, R.A., Nadia, P., Eric, P., Michel,
G., Valérie, B., Marcel, S., Denis, L.P., Jean, W., Georges, N.C., Annett, K.
(2010). Clostridium sticklandii, a specialist in amino acid degradation:revisiting its
metabolism through its genome sequence. BMC Genomics 2010, 11:555.
Paes, F., Liu, X., Mattes, T.E., Cupples, A.M. (2015). Elucidating carbon uptake from
vinyl chloride using stable isotope probing and Illumina sequencing. Applied
microbiology and biotechnology, 1-9.
94
Peter, H.J., Harfoot, C.G.(1990) Ilyobacter delafieldii sp. nov., a metabolically
restricted anaerobic bacterium fermenting PHB. Archives of Microbiology, 154,
253-259.
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Weissenbach,
J. (2010). A human gut microbial gene catalogue established by metagenomic
sequencing. Nature, 464(7285), 59-65.
Robinson, C., Barry, D.A., McCarty, P. L., Gerhard, J. I., Kouznetsova, I. (2009). pH
control for enhanced reductive bioremediation of chlorinated solvent source zones.
Science of the Total Environment, 407(16), 4560-4573.
Sasi, J.T.S., Sasikala, Ch., Ramana, Ch.V.(2008). Desulfovibrio psychrotolerans sp.
nov., a psychrotolerant and moderately alkaliphilic sulfate-reducing
deltaproteobacterium from the Himalayas. International Journal of Systematic and
Evolutionary Microbiology (2008), 58, 821–825.
Schreiber MD, Feinstein MD, Carey GR, Bahr J. 2004. Physical and chemical
mechanisms causing overlap of redox byproducts: Implications for simulating
anaerobic biodegradation. J Contam Hydrol 73:99–127.
Schwarzenbach R, Gschwend PM, Imboden DM. 1993. Environmental Organic
Chemistry. John Wiley and Sons, Inc, New York, NY, USA. 681 p.
Semprini, L., Roberts, P.V., Hopkins, G.D., McCarty, P.L. (1990). A Field Evaluation
of In‐Situ Biodegradation of Chlorinated Ethenes: Part 2, Results of Biostimulation
and Biotransformation Experiments. Groundwater, 28(5), 715-727.
Shi, Y., Du, X., Li, H., Xu, Z., Wang, Q., Meng, X., Li, F., (2012). Effects of soil
temperature and agitation on the removal of 1,2-dichloroethane from contaminated
soil. Sci. Total Environ. 423, 185-189.
Shuiquan, T., Po, H. W., Steven, A. H., Frank E. L., Elizabeth, A. E. (2016) Sister
Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and
Recent Strain Differentiation Likely Driven by Chlorinated Substrates. ORIGINAL
RESEARCH (12), February, 2016.
Stefano, M., Helge, K.A., Olga, V.K., Marc, S. (2011).Genome Sequence of
Desulfovibrio sp. A2, a Highly Copper Resistant, Sulfate-Reducing Bacterium
Isolated from Effluents of a Zinc Smelter at the Urals. JOURNAL OF
BACTERIOLOGY, Dec. 2011, 6793–6794.
95
Stumm W, Morgan J. 1996. Aquatic Chemistry. John Wiley & Sons, New York, NY,
USA.
Sung, H.Y., Hyun, S.S., Jung, H.W., Hyun, M.O., Hani, j., Jung, H.L., Sang, J. K.,
Kae, K.K. (2014).Carboxylicivirga gen. nov. in the family Marinilabiliaceae with
two novel species, Carboxylicivirga mesophila sp. nov. and Carboxylicivirga
taeanensis sp. nov., and reclassification of Cytophaga fermentans as Saccharicrinis
fermentans gen. nov., comb. nov. International Journal of Systematic and
Evolutionary Microbiology (2014), 64, 1351–1358
Sung, Y., Ritalahti, K.M., Sanford, R.A., Urbance, J.W., Flynn, S.J., Tiedje, J.M.,
Löffler, F.E. (2003). Characterization of two tetrachloroethene-reducing,
acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas
michiganensis sp. nov. Applied and Environmental Microbiology, 69(5),
2964-2974.
Suyama, A., Iwakiri, R., Kai, K., Tokunaga, T., Sera, N., Furukawa, K. (2001). Isolation
and characterization of Desulfitobacterium sp. strain Y51 capable of efficient
dehalogenation of tetrachloroethene and polychloroethanes. Bioscience,
biotechnology, and biochemistry, 65(7), 1474-1481.
Travis, B.J., Rosenberg, N.D. (1997). Modeling in situ bioremediation of TCE at
Savannah River: Effects of product toxicity and microbial interactions on TCE
degradation. Environmental science & technology, 31(11), 3093-3102.
Tyagi, M., da Fonseca, M.M.R., de Carvalho, C.C. (2011). Bioaugmentation and
biostimulation strategies to improve the effectiveness of bioremediation processes.
Biodegradation, 22(2), 231-241.
U.S. Environmental Protection Agency (EPA) (2000) “Engineered Approaches to In
Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field
Applications”, EPA, 542-R-00-008.
U.S. Environmental Protection Agency (EPA), (2008). Green Remediation: Incorating
Sustainable Environmental Practices into Remediation of Contaminated Sites: U.S.
EPA office of Solid Waste and Emergrncy Response. EPA/542/R-08/002.
Urynowicz, M. A. and Siegrist, R. L. (2000) “Chemical Degradation of TCE DNAPL
by Permanganate”, In: Proceedings of the Second International Conference on
Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 75-82.
96
US EPA Office of Solid Waste and Emergency Response, Technology Primer, Green
Remediation: Incorporating Sustainable Environmental Practices into Remediation
of Contaminated Sites 542-R- 08-002, April 2008
Volkering, F., Pijls, C. (2004). Factors Determining Reductive Dechlorination of
cis-1,2-DCE at PCE Contaminated Sites. Proceedings of the Fourth International
Conferenceon Remediation of Chlorinated and Recalcitrant Compounds
(Monterey, CA; May 2004). Paper 3D-10. Columbus, OH: Battelle Press.
Wang, S.Y., Kuo, Y.C., Huang, Y.Z., Huang, C.W., Kao, C.M. (2015). Bioremediation
of 1, 2-dichloroethane contaminated groundwater: Microcosm and microbial
diversity studies. Environmental Pollution, 203, 97-106.
Xu Liu, Bhanu Prakash Vellanki, Bill Batchelor, Ahmed Abdel-Wahab (2014)
“Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs)
Effects of process variables and mechanisms”, Chemical Engineering Journal, 237,
300–307.
Yannick, C., Marisol, G.U., Pierre, C., Rémy, G.(2013). Combination of high
throughput cultivation and dsrA sequencing for assessment of sulfate-reducing
bacteria diversity in sediments. FEMS Microbiology Ecology, Volume 83 ,26 – 37.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.5.239
論文開放下載的時間是 校外不公開

Your IP address is 18.191.5.239
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code