Responsive image
博碩士論文 etd-0722116-130209 詳細資訊
Title page for etd-0722116-130209
論文名稱
Title
電子封裝銅銲線介金屬相成長機制與銀銲線合金相平衡研究
Intermetallic Phases Formation Mechanism of Cu Wire Bonding and Phase Equilibrium Study of Ag Wire Bonding in the Electronic Packaging
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-08-22
關鍵字
Keywords
介金屬化合物、銅銲線、IC封裝、銀鋁金相圖、銀銲線
Ag-Al-Au phase diagram, Ag wire bonding, Cu wire bonding, IMC, IC package
統計
Statistics
本論文已被瀏覽 5977 次,被下載 133
The thesis/dissertation has been browsed 5977 times, has been downloaded 133 times.
中文摘要
IC封裝中,基於降低成本考量,已有研究其它製程來取代金線製程的趨勢。相較於金線,銅線有更好的導電導熱性,而銅導線與晶片接合的好壞對於整個IC產品的好壞影響甚大,因此銅線微接點的可靠度值得更進一步改善。第一部份的研究分為兩組實驗,第一組選用0.7mil的純銅線、鍍鈀銅線、銅鈀金線,第二組選用0.7mil的銅鈀金線搭配1.6/2.8/4um之鋁墊,在HTST、PCT及TCT三種測試環境下,觀察三種介金屬相Cu9Al4、CuAl、CuAl2的生長順序。研究發現富鋁的介金屬化合物CuAl2在大多數的情況中會先生成,然後才是第二相的Cu9Al4產生,在經過長時間時效之後,由於鋁墊消耗殆盡,Cu9Al4相會成為最終相。但在較厚鋁墊的HTST試驗中發現,CuAl2相最終將會取代Cu9Al4而存在。研究中也觀察擴散界面產生的kirkendal voids,將隨時效時間增加累積、合併最終成為crack,導致接點失效。第二部份研究有關銀合金線製程,其具有導電導熱性佳、對可見光反射率高達90%、耐電流較金銅大、較銅容易儲存等優勢,但銀合金線技術起步較晚,且由於目前文獻上缺乏相關的平衡相圖,對接點介金屬相形成的機制,不如Au-Al二元系來的清楚。本研究的擴散路徑與相分析結果將可提供未來製作低溫平衡相圖的訊息。
Abstract
For lower cost considerations, copper wire bonding has been applied in IC packaging in recent years. In this study, the intermetallics(IMCs) formed, growth and crack development were examined to evaluate the reliability of several copper wires with/ without wire surface coatings.In this study, the reliability tests include HTST, PCT, and TCT. The wire types are the 0.7 mil 4N copper wires, the Palladium coated-Copper (Pd-Cu) wires, and Au-Pd-plated copper wires. And there are three substrate types with the aluminum pad thickness of 1.6/2.8/4 micrometer. For the HTST test samples, two aging temperatures, 175℃and 205℃ were applied and the aging periods from 150 hrs to 2000 hrs. The microstructure of micro joints are cross-sectioned and examined under an electron microprobe to verified the formed intermetallic phases for the samples tested in various aging periods. The samples under PCT and TCT tests are examined for the corrosion and crack formation behavior. The formation of IMCs, Cu9Al4, CuAl and CuAl2, which are main compounds formed in copper wire bonding micro joints. The Al-rich phase (CuAl2) has high priority, and the second phase(Cu9Al4) appear on the interface near the copper wire side. After long period aging, the Cu-rich phase(Cu9Al4) expected to form when Al pad be consumed. However, in the thicker Al pad cases, the Cu9Al4 phase will be replace by the first phase(CuAl2) finally. The results also show that, the kirkendall voids accumulate and form cracks in the bonding micro joint, and therefore make the micro joint fail. The intermetallic formation sequences of different wire types are shown for a comparison.The second part of study is about Ag wire bonding process. Ag wire has good electric conductivity, thermal conductivity, high current withstand capacity, and easy to store. However, compared to Au-Al wire bonding system, it is not enough to understand Ag-Al-Au phase diagram and the intermetallic formation of Ag-alloy wire bonding. This study of Ag wire can provide more information about diffusion paths and phase identification of Ag-Al-Au ternary system in the lower temperature.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iv
英文摘要 v
目錄 vii
表目錄 x
圖目錄 xi
壹、前言 1
貳、文獻回顧 4
2-1 銅銲線部份 4
2-1-1 Cu-Al二元相圖 4
2-1-2 Cu-Al介金屬化合物的生成與成長 4
2-1-3 Cu-Al介金屬化合物對接點的影響 5
2-1-4 介金屬化合物生長速度公式 7
2-1-5 銅銲線製程與金線之比較 8
2-1-6 鍍鈀銅銲線製程 9
2-1-7 銅線待克服的問題 10
2-2 銀銲線部份 12
2-2-1 Al-Au 二元系統相平衡圖 12
2-2-2 Ag-Al 二元系統相平衡圖 13
2-2-3 Au-Ag 二元系統相平衡圖 14
2-2-4 Ag-Al-Au 三元系統相平衡圖 14
2-2-5 Al-Au、Al-Ag、Au-Ag 打線接合系統 15
2-2-6 反應路徑 17
2-2-7 動力學因素-成核與成長 19
參、實驗方法 20
3-1 銅銲線部份 20
3-1-1 銅合金線試片簡介 20
3-1-2 試片之先期測試 20
3-1-3 試片處理 20
3-1-4 試片分析 21
3-1-5 IMC厚度量測與公式建立 21
3-2 銀銲線部份 22
3-2-1 銀銲線合金擴散偶製作 22
3-2-2 合金試片的配製 22
3-2-3 擴散偶製作 24
3-2-4 均質化熱處理 24
3-2-5 試片處理 25
3-2-6 EPMA的量測分析 25
肆、實驗結果 26
4-1 HTST試驗下各種銅合金線的IMC生長 26
4-1-1 純銅線 26
4-1-2 攙入鈀之銅合金線 27
4-1-3 鍍鈀銅合金線 28
4-1-4 銅鈀金合金線_1 28
4-1-5 銅鈀金合金線_2 29
4-2 銅鈀金線與不同厚度之鋁墊接合 30
4-2-1 薄型鋁墊 30
4-2-2 正常型鋁墊 30
4-2-3 厚型鋁墊 31
4-3 PCT試驗下各種銅合金線的IMC生長 32
4-4 TCT試驗下各種銅合金線的IMC生長 32
4-5 AgxAuy-Al擴散偶的EPMA量測分析 33
4-5-1 Ag90Au10-Al擴散偶 33
4-5-2 Ag60Au40-Al擴散偶 34
4-5-3 Ag20Au80-Al擴散偶 35
伍、實驗討論 36
5-1 HTST試驗 36
5-1-1 純銅線 37
5-1-2 攙入鈀之銅合金線 38
5-1-3 鍍鈀銅合金線 39
5-1-4銅鈀金合金線_1 40
5-1-5銅鈀金合金線_2 41
5-2銅鈀金合金線_1與三種厚度之鋁墊接合 42
5-2-1 薄型(0.8~1.5um)鋁墊 42
5-2-2 正常型(1.6~2.8um)鋁墊 43
5-2-3 厚型(2.9~4.0um)鋁墊 44
5-3 IMC成長速率公式與常數K0 45
5-4 Ag-Al-Au三元相圖量測 46
5-4-1 Ag90Au10-Al擴散偶的擴散路徑 46
5-4-2 Ag60Au40-Al擴散偶的擴散路徑 47
5-4-3 Ag20Au80-Al擴散偶的擴散路徑 48
陸、結論 49
6-1 銅銲線介金屬相成長機制 49
6-2 銀銲線合金相平衡 51
柒、參考文獻 53
參考文獻 References
1. 鍾文仁, 陳佑任, “IC封裝製程與CAE應用(修訂版)”, 全華出版社, 2005.
2. S. K. Kang, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 6, pp. 998-1003, 1992.
3. V. Koeninger, H. H. Uchida, E. Fromm, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 18, No. 4, pp. 835-841, 1995.
4. L. Maiocco, D. Smyers, P. R. Munroe, I. Baker, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 3, pp. 592-935, 1990.
5. T. Uno, K. Tatsumi, and Y. Ohno, Proceedings of the Joint ASME/JSME Advances in Electronic Packaging, Vol. 1-2, pp. 771-777, 1992.
6. London PM fix, http://businessforecastblog.com.
7. 詹麗君, “IC微接點之顯微組織分析及孔洞形成機制”, 國立中山大學材料科學研究所碩士論文, 2006.
8. J.L. Murray, “Int. Met. Rev.”, Vol. 30, pp.211, 1985.
9. T.B. Massalski, “Bull.Alloy Phase Diagrams”, Vol. 1, pp. 27, 1979.
10. A.E. Gershinskii, B.I. Formin, E.I.Cherepov, and F.L. Edelman, “Investigation of Diffusion in The Cu-Al Thin Film System”, Thin Solid Films, Vol. 42, pp.269, 1977.
11. S.U. Campisano, E. Costanzo, and F. Scaccianoce, “Growth Kinetics of The θ-Phase in Al-Cu Thin Film Bilayers”, Thin Solid Film, Vol. 52, pp.97, 1978.
12. R.A. Hamm and J.M. Vandenberg, “A study of the growth kinetics of the copper-aluminum thin-film interface reaction by in situ x-ray diffusion and Rutherford backscattering analysis”, Journal of Applied Physics, Vol. 56, pp.293, 1984.
13. Hui Xu, Changqing Liu, Vadim V. Silberschmidt, and Zhong Chen, “Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization”, Journal of ELECTRONIC MATERIALS, Vol. 39, pp.124, 2010.
14. 儲德鋒,“鋁/銅液相擴散接合研究與應用”, 國立中央大學機械工程研究所, p75, June 2004.
15. G. G. Harman, “Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield”, 2nd ed., New York: McGraw-Hill, 1997.
16. E. Philofsky, “Design Limits When using Gold-Aluminum Bonds”, Proc. IEEE Reliability Phys. Symp., Las Vegas, NV, pp.11-16, 1971.
17. H. S. Chang, J. X. Pon, K.C. Hsieh, C.C. Chen, “Intermetallic Growth of Wire-bond at 175 °C High Temperature Aging”, J. Electronic Materials, Vol. 30, pp.1171-1177, 2001.
18. H. S. Chang, K.C. Hsieh, T. Martens, A.Yang, “Wire-bond Void Formation During High Temperature Aging”, IEEE Transactions on Components and Packaging Technologies, Vol. 27 , pp.155-160, .
19. M. H. Lue, C. T. Huang, S. T. Huang, K. C. Hsieh, “Bromine- and Chlorine-Induced Degradation of Gold-Aluminum Bonds”, J. Electronic Materials, Vol. 33, pp.1111-1117, 2004.
20. K. Toyozawa, K. Fujiya, S. Minamide, T. Maeda, “Development of Copper Wire Bonding Application Technology”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, pp.667-672, 1990.
21. Y. H. Tian, I. Lum, S. J. Won, S. H. Park, J. P. Jung, M. Mayer, Y. Zhou, “Experimental Study of Ultrasonic Wedge Bonding with Copper Wire”, 2005 6th International Conference on Electronic Packaging Technology, pp.389-393, 2005.
22. H. J. Kim, J. Y. Lee, K. W. Paik, “Effect of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability”, IEEE Transactions on Components and Packaging Technologies, Vol. 26, pp.367-373, 2003.
23. S. L. Khoury, D. J. Burkhard, D. P. Galloway, T. A. Scharr, A “Comparison of Copper and Gold Wire Bonding on Integrated Circuit Devices”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, pp.673-681, 1990.
24. K. W. Lam, H. M. Ho, S. Stoukatch, M. Van De Peer, P. Ratchev, C. J. Vath III, A. Schervan, E. Beyne, “Fine Pitch Copper Wire Bonding on Copper Bond Pad Process Optimization”, 2002 International Symposium on Electronic Materials and Packaging, pp.63-68, 2002.
25. F. W. Wulff, C. D. Breach, D. Stephan, Saraswati, K. J. Dittmer, “Characterization of Intermetallic Growth in Copper and Gold Ball Bonds on Aluminum Metallization”, 6th EPTC, Pan Pacific Singapore, 2004.
26. Bernd K Appelt, Andy Tseng, Shoji Uegaki and Louie Huang, “Cu wire bonding knows no limit – 28nm is qualified”, ICSJ, 2012.
27. L. Jiang, T. Micron Technol. Inc., Boise, “Reliability of Cu Wire Bonding to Al Metallization” Electronic Components and Technology Conference, 2007. ECTC Proceedings. 57th, pp.1604-1613, May 29th -June 1st, 2007.
28. Wei-Yao Chang, Hsiang-Chen Hsu, Shen-Li Fu, Chang-Lin Yeh, Yi-Shao Lai, “Characteristic of Heat Affected Zone for Ultra Thin Gold Wire/Copper Wire and Advanced Finite Element Wirebonding Model”, Electronics Packaging Technology Conference 2008 EPTC, pp.419-423, Dec. 2008.
29. P. Liu, L. Tong, J. Wang, L. Shi, H. Tang, “Challenges and Developments of Copper Wire Bonding Technology”, Microelectronics Reliability, Vol. 52, pp. 1092-1098, 2011.
30. T. Uno, “Bond Reliability Under Humid Environment for Coated Copper Wire and Bare Copper Wire”, Microelectronics Reliability, Vol. 51, pp. 148-156, 2010.
31. Y.W. Lin, R.Y. Wang, W.B. Ke, I.S. Wang, Y.T. Chiu, K.C. Lu, K.L. Lin, Y.S. Lai, “The Pd Distribution and Cu Flow Pattern of the Pd-plated Cu Wire Bond and Their Effect on the Nanoindentation”, Materials Science and Engineering A, Vol. 543, pp.152-157, 2012.
32. Integrated Hybrid Assembly, “Wire Bonding”, www.integratedhybridassembly.com/wire-bonding/
33. H. Okamoto, Journal of phase equilibria and diffusion, Vol. 29, No. 3, pp. 391-393, 1987.
34. J. L. Muray, H. Okamoto, T. B. Massalski, Bull. Alloy Phase Diagrams, Vol. 8, No. 1, pp. 20-29, 1987.
35. H. Okamoto, J. Phase Equilib., Vol. 12 ,No. 1, pp. 114-115, 1991.
36. M. Li, C. Li, F. Wang, D. Luo, W. Zhang, J. Alloys Compd, Vol. 385, pp. 199-206, 2004.
37. H. S. Liu, J. Wang, Y. Du, Z. P. Jin, Z. Metallkd., Vol. 95, No. 1, pp. 45-49, 2004.
38. W. B. Pearson, “A Handbook of Lattice Spacings and Structures of Metals and Alloys”, Oxford: Pergamon Press, 1958.
39. G. I. Petrenko, Z. Anorg. Chem., Vol. 46, pp. 49-59, German, 1905.
40. S. P. Gupta, Mater. Sci. Eng., Vol. 10, pp. 341-356, 1972.
41. A.J. McAlister, Binary Alloy Phase Diagrams, Vol. 1, pp. 8, 1979.
42. C. Wagner, Acta Metall., Vol.2(2), pp. 242-249, 1954.
43. J. L. White, R. L. Orr, and R. Hultgren, Acta Metall., Vol.5(12), pp. 747-760, 1957.
44. C.J. Cooke and W. Hume-Rothery, Acta Metall., Vol. 9(10), pp. 982, 1961.
45. H. Okamoto, and T. B. Massalski, Binary Alloy Phase Diagrams, Vol. 1, pp. 12, 1979.
46. A. Prince, “Silver-Aluminium-Gold ”, Ternary Alloys-A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Vol. 1, pp.1-2, VCH Publishers, New York, 1988.
47. K. Frank, and K. Schubert, “Crystal Structure of AuAl,” J. Less-Commom Met., Vol. 22, pp. 349-354, 1970.
48. M. Puselj, and K. Schubert, “Kristallstrukturen der Phasen Au2Al(h), Au2Al1-(r) und Au2Al1+(r)“, J. Less-Commom Met., Vol. 35, pp. 259-266, 1974.
49. A. Prince, G.V. Raynor, D.S. Evans, “Ag-Al-Au Phase Diagrams Ternary Gold Alloys”, Inst. Met., London, 1990.
50. V. Koeninger, H. H. Uchida, and E. Fromm, "Degradation of Gold-Aluminum Ball Bonds by Aging and Contamination," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 18, No. 4, pp. 835-841, 1995.
51. T. Uno, K. Tataumi, and Y. Ohno, "Voids Formation and Reliability in Gold-Aluminum Bonding," Proceedings of the Joint ASME/JSME Advances in Electronic Packaging, Vol. 1-2, pp. 771-777, 1992.
52. E. Philofsky, "Intermetallic Formation in Gold-Alluminum System," Solid State Electronics, Vol. 13, pp. 1391-1399, 1970.
53. Hai Liu, Qi Chen, Zhenqing Zhao, Qian Wang, Jianfeng Zeng, Jonghyun Chae, Jaisung Lee,“Reliability of Au-Ag Alloy Wire Bonding”, Electronic Components and Technology Conference, 2010.
54. Jong-Soo Cho, Hee-Suk Jeong, Jeong-Tak Moon, Se-Jin Yoo, Jae-Seok Seo, Seung-Mi Lee, Seung-Weon Ha, Eun-Kyu Her, Suk-Hoon Kang, Kyu-Hwan Oh, “Thermal Reliability & IMC Behavior of Low Cost Alternative Au-Ag-Pd Wire Bonds to Al Metallization”, Electronic Components and Technology Conference, 2009.
55. F. J. J. Van Loo, J. A. Van Beek, G. F. Bastin, and R. Metselaar, in Diffusion in Solids: Recent Developments, ed. By M. A. Dayananda and G. E. Murch, The Metallurgical Society, Inc., Warrendale, Pennsylvania, 1985.
56. J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly,Vol. 2, pp. 89-117, 1963.
57. J. B. Clark, Trans. Met. Soc. AIME, Vol. 227, p 1250, 1963.
58. A. A. Kodentsov, G. F. Bastin, F. J. J. Van Loo, Journal of Alloys and Compounds, Vol. 320, pp. 207–217, 2001.
59. R. J. Tarento, G. Blaise, Acta Metallurgica, Vol. 37, pp. 2305-2312, 1989.
60. P. Nash, M. F. Singleton, J. L. Murray, in “ASM Handbook Vol.3 Alloy Phase Diagrams”, ed. by H. Baker, ASM International, Materials Park, Ohio, 1992.
61. www.tytechcorp.com.tw
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code