Responsive image
博碩士論文 etd-0722116-143912 詳細資訊
Title page for etd-0722116-143912
論文名稱
Title
介金屬化合物在迴焊溫度下機械性質之計算 - 楊氏係數、蒲松比與熱膨脹係數
Mechanical Properties Calculations for Metal IMC at Reflow Temperature – Young’s Modulus, Poisson’s Ratio and Coefficient of Thermal Expansion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-08
繳交日期
Date of Submission
2016-08-22
關鍵字
Keywords
第一原理、熱膨脹係數、楊氏係數、蒲松比、介金屬化合物
first-principles method, Poisson’s ratio, Young’s modulus, intermetallic compound, coefficient of thermal expansion
統計
Statistics
本論文已被瀏覽 5830 次,被下載 1361
The thesis/dissertation has been browsed 5830 times, has been downloaded 1361 times.
中文摘要
在IC封裝的製程中,介金屬化合物扮演著重要的角色,其可以增加兩金屬之間的黏著強度以及韌性,但是厚度太厚或是不均勻都會影響到IC封裝的品質,因此許多研究藉由實驗或數值模擬的方法來分析其可靠度和破壞行為。若是使用數值模擬,材料的機械性質是必須的,但這些機械性質是與溫度有關,而這些機械相關性質不易由實驗獲得,且很多介金屬化合物與溫度相關之機械性質也無法由文獻中求得,因此本研究之目的為利用密度泛函理論及第一原理計算,建構一套數值模擬程序,以求得純金屬與介金屬化合物在不同溫度下之楊氏係數、蒲松比及熱膨脹係數。
本研究利用VASP和Phonopy兩軟體建立數值模擬的程序,並以純金屬銅、鋁、介金屬化合Cu3Sn和鐵鋁介金屬化合物為例子,做為此模擬程序之驗證。由模擬結果所示在沒有溫度效應下純金屬銅之楊氏係數誤差絕對值為5%,蒲松比誤差絕對值為1%;介金屬化合物Cu3Sn之楊氏係數與Microindentation實驗值之誤差絕對值為3%,其蒲松比符合實驗值之範圍。
有溫度效應下銅之楊氏係數在不同溫度下最大誤差絕對值為12%,而蒲松比在常溫下300K是符合實驗值的,銅之熱膨脹係數在300K下誤差絕對值為3.7%,當溫度達到600K時誤差絕對值達10%;鋁之熱膨脹係數由300K到600K誤差絕對值都在10%以內。介金屬化合物Cu3Sn其楊氏係數與蒲松比沒有高溫實驗值可比對,但熱膨脹係數在300K下與實驗值誤差絕對值為5.7%。為彌補缺少Cu3Sn之實驗數因此以鐵鋁介金屬化合物做為驗證,楊氏係數在300K、450K和500K時誤差絕對值為1%左右;最後本研究利用非線性擬合的方法提出楊氏係數與溫度之間的關係式,以預測在任意溫度下之楊氏係數。
Abstract
The characteristics of the intermetallic compound in an IC package are very important. When it is too thick or non-uniformly distributed, the reliability of the IC package may be degraded. Hence, many studies have experimentally investigated or numerically simulated intermetallic compound. If one intended to use numerical simulation approach, the material properties are integral. Experimentally determining mechanical properties at high temperature is difficult and takes a long time. Therefore, in this study, density functional theory and a method based on first principles are used to build a model of various metals and intermetallic compounds and to simulate them numerically to determine their Young’s modulus, Poisson’s ratios and coefficients of thermal expansion at reflow temperature. The simulation is conducted using the software VASP and Phonopy.
Four materials, Cu, Al, Cu3Sn and FeAl were considered. Comparing the Young’s modulus simulated results for Cu and Cu3Sn at room temperature with the relevant data in the literatures reveals errors in 10% for Cu and around 12% for Cu3Sn. The Poisson’s ratio is conformed to the reference. Experimental data at the reflow temperature of the intermetallic compound are hard to find: only the Young’s modulus of FeAl is in fact available, and the simulated error in that value is less than 1%. The coefficients of thermal expansion of Cu and Al from 300K to 600K have an error of about 10%. At 300K, the coefficient of thermal expansion of Cu3Sn has an error of 5.7% relative to experimental data. Nonlinear curve fitting also yield the temperature-dependent functions of Young’s modulus, Poisson’s ratio and coefficient of thermal expansion.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 v
圖目錄 vii
第一章 緒論 1
1.1背景介紹 1
1.2 文獻回顧 2
1.2.1 介金屬化合物之相關研究 2
1.2.2 介金屬化合物機械性質實驗研究 4
1.2.3運用分子動力學於材料機械性質之研究回顧 5
1.2.4 密度泛函理論運用於材料機械性質之研究回顧 6
1.3 研究目的 7
1.4 全文架構 8
第二章 基本理論介紹 13
2.1 密度泛函理論 13
2.1.1 電子密度 13
2.1.2 Thomas-Fermi模型 14
2.1.3 Hohenberg-Kohn模型 15
2.1.4 Kohn-Sham方程式 15
2.1.5 交換關連函數與贋勢能 17
2.2 彈性常數與機械性質的關係 19
2.3密度泛函微擾理論 21
2.3.1 晶格動力學 21
2.3.2 晶格振動聲子推導熱力學性質 23
2.3.3 熱膨脹係數 24
2.3.4高溫彈性常數[54] 25
2.4 軟體介紹 25
2.4.1 VASP介紹 26
2.4.2 VASP指令編輯流程 26
2.4.3 Phonopy介紹 28
第三章 研究流程 33
3.1 模擬流程 33
3.2 模擬設定 35
3.3 參數設定與收斂分析 37
第四章 結果與討論 50
4.1 不考慮溫度效應機械性質之計算 50
4.1.1純金屬之晶體結構與機械性質 50
4.1.2 介金屬化合物之晶體結構與機械性質 52
4.2 考慮溫度效應機械性質之計算 54
4.2.1 純金屬之機械性質與溫度之關係 55
4.2.2 介金屬化合物之機械性質與溫度之關係 56
第五章 結論與未來展望 89
5.1 結論 89
5.2 未來展望 90
參考文獻 92
附錄A 98
附錄B 99
附錄C 101
參考文獻 References
[1] C. C. Chi, C. W. Wu, M. J. Wang, and H. C. Lin, "3D-IC interconnect test, diagnosis, and repair," in VLSI Test Symposium (VTS), 2013 IEEE 31st, pp. 1-6, 2013.
[2] K. Byoung-Joon, L. Gi-Tae, K. Jaedong, L. Kiwook, P. Young-Bae, and J. Young-Chang, "Intermetallic compound and Kirkendall void growth in Cu pillar bump during annealing and current stressing," in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, 2008, pp. 336-340, 2008.
[3] A. Huffman, M. Lueck, C. Bower, and D. Temple, "Effects of Assembly Process Parameters on the Structure and Thermal Stability of Sn-Capped Cu Bump Bonds," in 2007 Proceedings 57th Electronic Components and Technology Conference, pp. 1589-1596, 2007.
[4] J. DeLucca, J. Osenbach, and F. Baiocchi, "Observations of IMC Formation for Au Wire Bonds to Al Pads," Journal of Electronic Materials, vol. 41, pp. 748-756, 2012.
[5] P. Ratchev, S. Stoukatch, and B. Swinnen, "Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads," Microelectronics Reliability, vol. 46, pp. 1315-1325,2006.
[6] S. Na, T. Hwang, J. Park, J. Kim, H. Yoo, and C. Lee, "Characterization of intermetallic compound (IMC) growth in Cu wire ball bonding on Al pad metallization," in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 1740-1745, 2011.
[7] H. Liu, C. Xu, X. Liu, D. Yu, F. Dai, Y. Lu, et al., "Effect of IMC growth on thermal cycling reliability of micro solder bumps," in Electronics Packaging Technology Conference (EPTC 2013), 2013 IEEE 15th, pp. 836-839, 2013.
[8] Y. Orii, K. Toriyama, S. Kohara, H. Noma, K. Okamoto, and K. Uenishi, "Effect of preformed Cu-Sn IMC layer on electromigration reliability of solder capped Cu pillar bump interconnection on an organic substrate," in CPMT Symposium Japan, 2012 2nd IEEE, pp. 1-4, 2012.
[9] H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen, et al., "Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds," Acta Materialia, vol. 59, pp. 5661-5673, 2011.
[10] O. Mokhtari, K. Min-Su, H. Nishikawa, F. Kawashiro, S. Itou, T. Maeda, et al., "Effect of isothermal aging on the growth behavior of Cu/Al intermetallic compounds," in Electronics Packaging (ICEP), 2014 International Conference on, pp. 144-147, 2014.
[11] B. Ill, E, B. Horv, and th, "Comparing the IMC layer growth in Sn-Cu, Sn-Ag-Cu and Sn-Ni-Cu layer systems," in Proceedings of the 36th International Spring Seminar on Electronics Technology, pp. 103-108, 2013.
[12] R. R. Chromik, R. P. Vinci, S. L. Allen, and M. R. Notis, "Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints," Journal of Materials Research, vol. 18, pp. 2251-2261, 2003.
[13] P. F. Yang, Y. S. Lai, S. R. Jian, and J. Chen, "Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Measured by Nanoindentation," in Electronic Packaging Technology, 2007. ICEPT 2007. 8th International Conference on, pp. 1-5, 2007.
[14] W. Zhong, F. Qin, T. An, and T. Wang, "Mechanical properties of intermetallic compounds in solder joints," in Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), 2010 11th International Conference on, pp. 520-524, 2010.
[15] S. R. L. I. a. G. K. L. R. J. Fields , Jr., "PHYSICAL AND MECHANICAL PROPERTIES OF INTERMETALLIC COMPOUNDS COMMONLY FOUND IN SOLDER JOINTS," Metal Science of Joining, Oct 20-24 1991.
[16] B. Subrahmanyam, "Elastic Moduli of Some Complicated Binary Alloy Systems," Transactions of the Japan Institute of Metals, vol. 13, pp. 93-95, 1972.
[17] H. J. Albrecht, A. Juritza, K. Muller, W. H. Muller, J. Sterthaus, J. Villain, et al., "Interface reactions in microelectronic solder joints and associated intermetallic compounds: an investigation of their mechanical properties using nanoindentation," in Electronics Packaging Technology, 2003 5th Conference (EPTC 2003), pp. 726-731, 2003.
[18] V. M. F. Marques, C. Johnston, and P. S. Grant, "Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 1: Young’s modulus, hardness and deformation mechanisms as a function of temperature," Acta Materialia, vol. 61, pp. 2460-2470, 2013.
[19] S. Lotfian, J. M. Molina-Aldareguia, K. E. Yazzie, J. Llorca, and N. Chawla, "Mechanical Characterization of Lead-Free Sn-Ag-Cu Solder Joints by High-Temperature Nanoindentation," Journal of Electronic Materials, vol. 42, pp. 1085-1091, 2013.
[20] I. Tsai, E. Wu, S. F. Yen, and T. H. Chuang, "Mechanical properties of intermetallic compounds on lead-free solder by moiré techniques," Journal of Electronic Materials, vol. 35, pp. 1059-1066.
[21] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[22] Z. Yao, C.-C. Zhu, M. Cheng, and J. Liu, "Mechanical properties of carbon nanotube by molecular dynamics simulation," Computational Materials Science, vol. 22, pp. 180-184, 2001.
[23] B. WenXing, Z. ChangChun, and C. WanZhao, "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics," Physica B: Condensed Matter, vol. 352, pp. 156-163, 2004.
[24] H. A. Wu, "Molecular dynamics study of the mechanics of metal nanowires at finite temperature," European Journal of Mechanics - A/Solids, vol. 25, pp. 370-377, 2006.
[25] D. Huang, Q. Zhang, and P. Qiao, "Molecular dynamics evaluation of strain rate and size effects on mechanical properties of FCC nickel nanowires," Computational Materials Science, vol. 50, pp. 903-910, 2011.
[26] C. Wen-Hwa, C. Hsien-Chie, and Y. Ching-Feng, "On the mechanical properties of Cu3Sn intermetallic compound through molecular dynamics simulation and nanoindentation testing," in Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), 2010 11th International Conference on, pp. 1-7, 2010.
[27] J. Zhao, J.-W. Jiang, and T. Rabczuk, "Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations," Applied Physics Letters, vol. 103, p. 231913, 2013.
[28] K.-H. Lin, J.-Y. Li, J.-S. Lin, S.-P. Ju, J.-M. Lu, and J.-Y. Hsieh, "Mechanical properties and thermal stability of ultrathin tungsten nanowires," RSC Advances, vol. 4, pp. 6985-6990, 2014.
[29] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review, vol. 136, pp. B864-B871, 1964.
[30] H.-L. Chen, S.-P. Ju, J.-S. Lin, J. Zhao, H.-T. Chen, J.-G. Chang, et al., "Electronic properties of a silicon carbide nanotube under uniaxial tensile strain: a density function theory study," Journal of Nanoparticle Research, vol. 12, pp. 2919-2928, 2010.
[31] M. F. X. Wagner and W. Windl, "Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles," Acta Materialia, vol. 56, pp. 6232-6245, 2008.
[32] M. F. X. Wagner and W. Windl, "Elastic anisotropy of Ni4Ti3 from first principles," Scripta Materialia, vol. 60, pp. 207-210, 2009.
[33] R. Yang †, S. Tanaka, and M. Kohyama *, "First-principles study on the tensile strength and fracture of the Al-terminated stoichiometric α-Al2O3(0001)/Cu(111) interface," Philosophical Magazine, vol. 85, pp. 2961-2976, 2005.
[34] L. Xuejie, Z. Anping, J. Yongjun, C. Xiaoqiang, and J. Huiling, "Grain Size Effect on the Mechanical Properties of TiN: First-Principle Studies," Science & Technology Review, vol. 29, pp. 33-36, 2011.
[35] S. Y. Li Qing-Kun, Zhou Yu, Zeng Fan-Lin, "First principles study on the structure and mechanical properties of hcp-C3 carbon bulk ring," Acta Physica Sinica, vol. 61, pp. 43103-043103, 2012.
[36] H. M. Jin and P. Wu, "First principles calculation of thermal expansion coefficient: Part 1. Cubic metals," Journal of Alloys and Compounds, vol. 343, pp. 71-76, 2002.
[37] A. Togo, L. Chaput, I. Tanaka, and G. Hug, "First-principles phonon calculations of thermal expansion," Physical Review B, vol. 81, p. 174301, 2010.
[38] M. K. Gupta, Singh, B., Mittal, R., Rols, S., & Chaplot, S. L, "Lattice Dynamics and Thermal Expansion Behavior in Metal Cyanides, MCN (M= Cu, Ag, Au): Neutron Inelastic Scattering and First Principles Calculations," arXiv preprint arXiv:1510.08639, 2015.
[39] L. H. Thomas, "The calculation of atomic fields," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, pp. 542-548, 1927.
[40] V. Bach and H. Siedentop, "Universality of the Fermi-Hellmann model," Journal of Mathematical Analysis and Applications, vol. 157, pp. 385-394, 1991.
[41] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. A1133-A1138, 1965.
[42] F. Herman, J. P. Van Dyke, and I. B. Ortenburger, "Improved Statistical Exchange Approximation for Inhomogeneous Many-Electron Systems," Physical Review Letters, vol. 22, pp. 807-811, 1969.
[43] G. Kresse and J. Furthmüller, "Efficient iterative schemes for extit{ab initio} total-energy calculations using a plane-wave basis set," Physical Review B, vol. 54, pp. 11169-11186, 1996.
[44] J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy," Physical Review B, vol. 45, pp. 13244-13249, 1992.
[45] J. P. Perdew, K. Burke, and Y. Wang, "Generalized gradient approximation for the exchange-correlation hole of a many-electron system," Physical Review B, vol. 54, pp. 16533-16539, 1996.
[46] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, "Iterative minimization techniques for extit{ab initio} total-energy calculations: molecular dynamics and conjugate gradients," Reviews of Modern Physics, vol. 64, pp. 1045-1097, 1992.
[47] I. S. Sokolnikoff, and Robert Dickerson Specht, Mathematical theory of elasticity. New York: McGraw-Hill, 1956.
[48] R. Hill, "The Elastic Behaviour of a Crystalline Aggregate," Proceedings of the Physical Society. Section A, vol. 65, p. 349, 1952.
[49] W. Voigt, "Einleitung," in Lehrbuch der Kristallphysik: mit Ausschluß der Kristalloptik, ed Wiesbaden: Vieweg+Teubner Verlag, 1966, pp. 1-14, 1966.
[50] H. Köuppel, W. Domcke, and L. S. Cederbaum, "Multimode Molecular Dynamics Beyond the Born-Oppenheimer Approximation," in Advances in Chemical Physics, ed: John Wiley & Sons, Inc., pp. 59-246, 2007.
[51] A. A. Maradudin, Theory of lattice dynamics in the harmonic approximation vol. No. 3: Academic Pr, 1971.
[52] M. A. Blanco, E. Francisco, and V. Luaña, "GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model," Computer Physics Communications, vol. 158, pp. 57-72, 2004.
[53] S. I. Novikova, "Thermal expansion of solids," Moscow Izdatel Nauka, vol. 1, 1974.
[54] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, "SAFT: Equation-of-state solution model for associating fluids," Fluid Phase Equilibria, vol. 52, pp. 31-38, 1989.
[55] K. Georg, "https://www.vasp.at/," 2010.
[56] J. Wang, H. Li, S. Wang, X. Liu, Y. Li, and L. Jiang, "The desorption kinetics of the Mg(NH2)2 + LiH mixture," International Journal of Hydrogen Energy, vol. 34, pp. 1411-1416, 2009.
[57] A. Togo, "http://atztogo.github.io/phonopy/," 2009.
[58] F. Birch, "Finite Elastic Strain of Cubic Crystals," Physical Review, vol. 71, pp. 809-824, 1947.
[59] H. M. Ledbetter and E. R. Naimon, "Elastic Properties of Metals and Alloys. II. Copper," Journal of Physical and Chemical Reference Data, vol. 3, pp. 897-935, 1974.
[60] W. P. Davey, "Precision Measurements of the Lattice Constants of Twelve Common Metals," Physical Review, vol. 25, pp. 753-761, 1925.
[61] R. An, C. Wang, Y. Tian, and H. Wu, "Determination of the Elastic Properties of Cu3Sn Through First-Principles Calculations," Journal of Electronic Materials, vol. 37, pp. 477-482, 2008.
[62] X. Y. Pang, S. Q. Wang, L. Zhang, Z. Q. Liu, and J. K. Shang, "First principles calculation of elastic and lattice constants of orthorhombic Cu3Sn crystal," Journal of Alloys and Compounds, vol. 466, pp. 517-520, 2008.
[63] J. Chen, Y.-S. Lai, P.-F. Yang, C.-Y. Ren, and D.-J. Huang, "Structural and elastic properties of Cu6Sn5 and Cu3Snfrom first-principles calculations," Journal of Materials Research, vol. 24, pp. 2361-2372, 2009.
[64] X. Deng, M. Koopman, N. Chawla, and K. K. Chawla, "Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation," Materials Science and Engineering: A, vol. 364, pp. 240-243, 2004.
[65] T. E. ToolBox, "http://www.engineeringtoolbox.com/," ed, 2016.
[66] X. Deng, N. Chawla, K. K. Chawla, and M. Koopman, "Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation," Acta Materialia, vol. 52, pp. 4291-4303, 2004.
[67] G.-Y. Jang, J.-W. Lee, and J.-G. Duh, "The nanoindentation characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solder bump," Journal of Electronic Materials, vol. 33, pp. 1103-1110, 2004.
[68] W. C. Overton and J. Gaffney, "Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper," Physical Review, vol. 98, pp. 969-977, 1955.
[69] F. C. Nix and D. MacNair, "The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron," Physical Review, vol. 60, pp. 597-605, 1941.
[70] 朱祐璁, "數位影像相關法於鈀金屬不同溫度下之熱膨脹係數量測," 中山大學機械與機電工程學系研究所學位論文, pp. 1-98, 2014.
[71] S. R. L. I. R. J. Fields, and G. K. Lucey Jr, , M. J. Cieslak, J. H. Perepezko, S. Kang, and M. E. Glicksman, Eds., "Physical and mechanical properties of intermetallic compounds commonly found in solder joints," The Metal Science of Joining, vol. Warrendale, PA: The Minerals, Metal, and Mining Society, pp. 165-173, 1992.
[72] L. Liu, X. Wu, R. Wang, W. Li, and Q. Liu, "First principle study on the temperature dependent elastic constants, anisotropy, generalized stacking fault energy and dislocation core of NiAl and FeAl," Computational Materials Science, vol. 103, pp. 116-125, 2015.
[73] M. R. Harmouche and A. Wolfenden, "Temperature and composition dependence of young's modulus for ordered B2 polycrystalline CoAl and FeAl," Materials Science and Engineering, vol. 84, pp. 35-42, 1986.
[74] S. R. L. I. R.J. Field, and J.G.K. Lucey, "Metal Science of Joining, edited by M.J. Cieslak, J.H. Perepezko, S. Kang,and M.E.," Glicksman, pp. 165-174, 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code