Responsive image
博碩士論文 etd-0722116-161205 詳細資訊
Title page for etd-0722116-161205
論文名稱
Title
次波長光柵元件在矽光子的應用
Subwavelength grating devices for silicon photonics applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-24
關鍵字
Keywords
四分之一波長相位移、莫列波光柵、漸變結構、布拉格光柵、矽光子
phase-shifted grating, moiré grating, apodization, Bragg grating, silicon photonics
統計
Statistics
本論文已被瀏覽 5740 次,被下載 200
The thesis/dissertation has been browsed 5740 times, has been downloaded 200 times.
中文摘要
本論文主要探討絕緣層上覆矽平台次波長光柵波導的結構設計,其中布拉格光柵反射器能夠將特定的入射波長進行反射。此矽光子元件被用來當作光濾波器、分波多工或是感測元件。而由波導光柵造成的旁瓣會使得在分波多工器應用中產生通道之間串音及干擾。此研究利用高斯漸變無足化的結構設計,透過調變波導光柵的深度達到抑制旁瓣效果,旁模抑制比可以達到20dB以上。論文中將不同的結構設計使其光柵寬度漸變,結構包含了條形波導光柵、披覆層調製波導光柵、四分之一波長相位移光柵以及取樣光柵,皆能夠抑制其旁瓣。
除了一般的漸變結構之外,我們將討論莫列波光柵設計。莫列波光柵波導除了可以利用電子束微影以及曝光製程外,還能夠使用兩次不同週期全像術干涉曝光製作。光柵包含小週期的漸變以及大週期規律性的變化,此設計變化使其具備π的相位移,產生與四分之一波長相位移光柵相同效果。在相同光柵長度下,透過設計不同的莫列波光柵大週期數可以調控其通帶頻寬,在1、2、3個大週期數時,分別具有0.18nm、0.6nm、1.09nm的通帶頻寬。除此之外也會模擬不完整圖形的莫列波光柵,不同的圖形則不一定具有四分之一波長相位移效果。文中也會模擬在不同的製程條件下,探討其製程容忍度。
Abstract
This thesis focuses on the design and simulation of subwavelength waveguide gratings, which reflect the light at its Bragg wavelength, implemented on silicon-on-insulator (SOI) platform. This photonic device has been utilized as an optical filter, a wavelength division multiplexer, and a sensing element. However, the strong side-lobe ripples arise from the waveguide gratings would cause serious channel crosstalks once the waveguide gratings are used to implement wavelength division multiplexing devices. In this work, we incorporate Gaussian-apodized structure in the waveguide grating design to reduce the side-lobe ripples by means of grating width modulation. Apodized grating is able to obtain a side-lobe suppression ratio of larger than 20 dB. Such an apodization structure is successfully implemented in strip-type and cladding-modulated waveguide gratings for side-lobe suppression. It works for not only uniform gratings but also phase-shifted gratings and sampled gratings. In addition, the moiré grating design, which is composed of two grating periods, is also implemented on SOI waveguides. This moiré grating has a π phase shift just like a phase-shifted grating, but more importantly this grating provides a tunable resonant bandwidth, which can not be achieved by a conventional phase-shifted grating. A resonant bandwidth of 0.18, 0.6 and 1.09 nm can be realized by cascading one, two, and three moiré gratings, respectively. Performance variation of the moiré gratings against the fabrication errors is finally investigated.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 4
1.3.1漸變光柵波導結構 4
1.3.2漸變光柵波導於光學時間延遲上的應用 5
1.3.3莫列波光柵波導結構 7
1.3.4混合型分布回授式雷射雷射 10
第二章 基礎理論 11
2.1 數值方法 11
2.1.1 轉移矩陣法 11
2.1.2 特徵模態展開法 15
2.2 布拉格光柵波導 17
2.2.1 條形波導(Strip Waveguide)布拉格光柵 19
2.2.2 披覆層調製(Cladding modulated)布拉格光柵 20
第三章 漸變布拉格光柵波導設計與模擬 21
3.1 最佳化目標 21
3.2 漸變函數選擇 22
3.3 模擬計算方法選擇 24
3.4 漸變結構光柵設計 26
3.4.1披覆層調製波導光柵中間波導漸變結構 26
3.4.2披覆層調製波導光柵兩側波導光柵漸變結構 32
3.4.3條形波導光柵漸變結構 36
3.4.4填充因子漸變結構 37
3.4.5取樣光柵漸變結構 40
3.5 光柵時間延遲特性 42
3.5.1均勻週期性條形波導光柵延遲時間分析 42
3.5.2均勻週期性披覆層調製波導光柵延遲時間分析 43
3.6 漸變光柵下線光罩佈局設計 45
第四章 莫列波光柵波導設計與模擬 48
4.1 莫列波光柵結構設計 48
4.2 莫列波光柵波形變化探討 51
4.3 大週期數量選擇 52
4.4 製程因素考量及設計 55
4.4.1乾式蝕刻圖形失真考量 55
4.4.2濕式蝕刻圖形失真考量 57
4.5 莫列波光柵與四分之一波長相位移光柵結構比較 64
4.6 莫列波光柵延遲時間特性 67
4.7 莫列波光柵下線光罩佈局設計 69
第五章 結論與未來工作 71
5.1 結論 71
5.2 未來工作 72
參考文獻 74
附錄A 次波長光柵耦合器設計與應用 77
1.次波長光柵耦合器 77
2.次波長光柵耦合器基礎理論 80
3.高效率光柵耦合器 82
3.1 結構設計 82
3.2光柵耦合器匹配區設計 83
3.3光柵週期選擇 86
3.4二維匹配區反射模擬 88
4.高效率光柵耦合器下線光罩佈局設計 90
附錄B光纖光學角度感測器 91
1.原理及架構說明 91
2.次波長光柵結構設計 92
參考文獻 References
[1] T. Erdogan, "Fiber grating spectra," IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, 1997.
[2] G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quant. Electron., vol.37, no.4, pp. 525-532, 2001.
[3] B. J. Eggleton, C. Martijn de Sterke, and R. E. Slusher, "Bragg solitons in the nonlinear Schro¨dinger limit: experiment and theory," J. Opt. Soc. Am. B, vol.16, no. 4, pp. 587-599, 1999.
[4] J. E. Heebner, and R. W. Boyd, "Enhanced all-optical switching by use of a nonlinear fiber ring resonator," Opt. Lett., vol. 24, no. 12, pp. 847-849, 1999.
[5] S. Khan, and S. Fathpour, "Complementary apodized grating waveguides for tunable optical delay lines," Opt. Express, vol. 20, no. 18, pp. 19859-19867, 2012.
[6] S. Khan, and S. Fathpour, "Demonstration of complementary apodized cascaded grating waveguides for tunable optical delay lines," Opt. Lett., vol. 38, no. 19, pp. 3914-3917, 2013.
[7] G. Heise, R. Matz, and U. Wolff, "Phase-shifted holographic gratings for distributed feedback lasers," Tech. Dig. SPIE Conf. Integrated Opt. Cir. Eng. III, pp. 651-715, 1986.
[8] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, "Diode Lasers and Photonic Integrated Circuits," 2nd ed. John Wiley & Sons, 2012.
[9] T. Fessant, "Gaussian‐like tapered grating quarter wave‐shifted DFB semiconductor lasers for high‐power single‐ mode operation," Appl. Phys. B, vol. 67, no. 6, pp. 769-772, 1998.
[10] D. Wiesmann, C. David, R Germann, D.Erni, and G.L. Bona, "Apodized surface‐corrugated gratings with varying duty cycles," IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 639-641, 2002.
[11] D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus , and W. J. Stewart, "phase-shifted moire grating fibre resonators." IEEE Electron. Lett., vol. 26, no. 1, pp. 10-12, 1990.
[12] S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, "Design of phase-shifted hybrid silicon distributed feedback lasers," Opt. Express, vol. 19, no. 10, pp. 9255-9261, 2011.
[13] A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, "A distributed feedback silicon evanescent laser," Opt. Express, vol. 16, no. 7, pp. 4413-4419, 2008.
[14] H. Ghafouri-Shiraz, "Distributed feedback laser diodes and optical tunable filters," John Wiley & Sons, 2004.
[15] X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, "Uniform and sampled bragg gratings in SOI strip waveguides with sidewall corrugations," IEEE Photon. Technol. Lett., vol. 23, pp. 290-292, 2011.
[16] M. J. N. Lima, A. L. J. Teixeira, and J. R. F. da Rocha, "Optimization of apodized fiber grating filters for WDM systems," in Proc. IEEE LEOS Annu. Meeting, vol. 2, pp. 876-877, 1999.
[17] K. Ennser, N. Zervas, and R. L. Laming, "Optimization of Apodized Linearly Chirped Fiber Gratings for Optical Communications," IEEE J. Quant. Electron., vol. 34, no. 5, pp. 770-778, 1998.
[18] B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, "Widely tunable sampled grating DBR laser with integrated electroabsorption modulator," IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 638-640, 1999.
[19] B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, "Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers," IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 762-764, 2000.
[20] L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, "Bandwidth controllable transmission filter based on Moire´ fiber Bragg grating," Optik, vol. 113, no. 9, pp. 464-468, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code