Responsive image
博碩士論文 etd-0722116-164916 詳細資訊
Title page for etd-0722116-164916
論文名稱
Title
具三甲基苯硼與吩噻嗪基團化合物之載子傳輸特性研究
Study of Carrier Transport Properties of Phenothiazine/Dimesitylborane-Based Materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-08-22
關鍵字
Keywords
三甲基苯硼、飛行時間法、載子遷移率、吩噻嗪、雙極性傳輸
phenothiazine, dimesitylborane, time-of-flight, bipolar transport, carrier mobility
統計
Statistics
本論文已被瀏覽 5647 次,被下載 29
The thesis/dissertation has been browsed 5647 times, has been downloaded 29 times.
中文摘要
有機半導體材料本身具有獨特的光學、電氣、以及光電元件上的應用,其中載子遷移率(mobility)為影響元件性能之重要參數,因此如何提高載子遷移率及發展雙極性傳輸材料為一項重要課題。
在 此論文,我們將藉由飛行時間量測法(Time of Flight,TOF)來量測一系列具三甲基苯硼與吩噻嗪基團之非晶態有機材料的載子傳輸特性。我們發現在一分子上同時導入三甲基苯硼與吩噻嗪基團的確使 材料具有雙極性之傳輸特性,而電子遷移率介於6.2×10-6-1.0×10-3 cm2/Vs,電洞遷移率介於3.2×10-6-8.8×10-5 cm2/Vs的範圍之間。值得一提的是,隨著單一分子內的吩噻嗪基團數量增加,反而提升的該系列材料電子的傳遞能力,在各自具有3個、2個、1個吩噻嗪基 團的三種不同分子,其在相同電場下所測得之載子遷移率各自為7.7×10-5 cm2/Vs 、2.8×10-5 cm2/Vs 、7.1×10-6 cm2/Vs 。
此系列材料都具有雙載子傳輸特性,故可用為有機發光二極體中的主體材料。
Abstract
Organic semiconductors can be widely applied in optoelectronic devices benefiting on their unique optical and electrical properties. Carrier transport capability of the materials plays a critical role in the performances of organic optoelectronic devices. Therefore, the development of bipolar-transporting materials is an important topic.
In this thesis, we use time-of-flight measurement technique to study carrier transport properties of phenothiazine/dimesitylborane-based materials. The dimesitylborane and phenothiazine moieties was verified to introduce bipolar transport capability. The electron and hole mobilities of these materials are in the range of 6.2×10-6-1.0×10-3 cm2/Vs and 3.2×10-6-8.8×10-5 cm2/Vs, respectively. Interestingly, we found that the electron mobility was increased with the increasing number of phenothiazine moieties. The electron mobilities of the three materials which have three, two and one phenothiazine moieties are 7.7 × 10-5cm2 / Vs, 2.8 × 10-5cm2 / Vs and 7.1 × 10-6cm2 / Vs, respectively.
Because the series of materials have bipolar transporting capability, they can be applied in OLED as host materials.
目次 Table of Contents
目錄
中文論文審定書 i
英文論文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 ix
第一章 緒論 1
1-1前言 1
1-2載子於有機半導體內之傳輸機制 1
1-3有機發光二極體發展回顧 5
1-4載子傳輸特性對有機光電元件之影響 6
1-5研究動機與目的 8
第二章 實驗方法 11
2-1前言 11
2-2實驗設備介紹 12
2-2-1超音波震盪機 12
2-2-2惰性氣體手套箱 12
2-2-3高真空熱蒸鍍系統 12
2-3飛行時間(time-of-flight)量測法 13
2-3-1原理機制 13
2-3-2暫態光電流訊號解析 15
2-3-4量測元件製備 17
第三章 雙極性傳輸特性之研究 19
3-1前言 19
3-2載子傳輸特性 21
3-2-1材料CC-MP1 21
3-2-2材料CC-MP2 21
3-2-3材料CC-MP3 22
3-2-4材料CC-MP4 22
3-2-5材料CC-MP5 22
3-2-6材料CC-MP6 23
3-2-7材料CC-MP7 23
3-2-8材料CC-MP8 23
3-3結果與討論 41
3-4結論 45
參考文獻 46
參考文獻 References
[1] Roar R. Søndergaard, Markus Hösel, and Frederik C. Krebs. "Roll‐to‐Roll fabrication of large area functional organic materials." Journal of Polymer Science Part B: Polymer Physics 51.1 (2013): 16-34.
[2] Ko, Seung H., et al. "All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles." Nanotechnology18.34 (2007): 345202.
[3] S. R. Forrest. "The path to ubiquitous and low-cost organic electronic appliances on plastic." Nature 428.6986 (2004): 911-918.
[4] Wang, Chuan. et al. "User-interactive electronic skin for instantaneous pressure visualization." Nature materials 12.10 (2013): 899-904.
[5] Lin, H‐W., et al. "Highly Efficient Visible‐Blind Organic Ultraviolet Photodetectors." Advanced Materials 17.20 (2005): 2489-2493.
[6] M.J.S. Dewar., and H. N. Schmeising. "Resonance and conjugation—II Factors determining bond lengths and heats of formation." Tetrahedron 11.1-2 (1960): 96-120.
[7] Steiner, E., P. W. Fowler, and R. W. A. Havenith. "Current densities of localized and delocalized electrons in molecules." The Journal of Physical Chemistry A 106.30 (2002): 7048-7056.
[8] Novikov, S. V., et al. "Essential role of correlations in governing charge transport in disordered organic materials." Physical Review Letters 81.20 (1998): 4472.
[9] Simmons, John G. "Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems." Physical Review 155.3 (1967): 657..
[10] Pope, M., H. P. Kallmann, and P. Magnante. "Electroluminescence in organic crystals." The Journal of Chemical Physics 38.8 (1963): 2042-2043.
[11] Helfrich, W., and W. G. Schneider. "Recombination radiation in anthracene crystals." Physical Review Letters 14.7 (1965): 229.
[12] Williams, D. F., and M. Schadt. "A simple organic electroluminescent diode." Proceedings of the IEEE 58.3 (1970): 476-476.
[13] Vincett, P. S., et al. "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films." Thin solid films 94.2 (1982): 171-183.
[14] Tang, Ching W., and Steven A. VanSlyke. "Organic electroluminescent diodes." Applied physics letters 51.12 (1987): 913-915.
[15] Adachi, Chihaya, et al. "Electroluminescence in organic films with three-layer structure." Japanese Journal of Applied Physics 27.2A (1988): L269.
[16] Benor, Amare, et al. "Energy barrier, charge carrier balance, and performance improvement in organic light-emitting diodes." Applied Physics Letters 96.24 (2010): 243310.
[17] Wu, C. C., et al. "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices." Applied Physics Letters 70.11 (1997): 1348-1350.
[18] Ganzorig, C., K. Suga, and M. Fujihira. "Alkali metal acetates as effective electron injection layers for organic electroluminescent devices." Materials Science and Engineering: B 85.2 (2001): 140-143.
[19] Köhler, Anna. "Organic semiconductors: No more breaks for electrons." Nature materials 11.10 (2012): 836-837.
[20] Li, Y. Q., et al. "An Efficient Pure Blue Organic Light‐Emitting Device with Low Driving Voltages." Advanced Materials 14.18 (2002): 1317-1321.
[21] J. M. Shi and C. W. Tang. "Anthracene derivatives for stable blue-emitting organic electroluminescence devices." Applied physics letters 80.17 (2002): 3201-3203.
[22] Chaskar, Atul, Hsiao‐Fan Chen, and Ken‐Tsung Wong. "Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices." Advanced Materials 23.34 (2011): 3876-3895.
[23] L. Duan, et al. "Strategies to Design Bipolar Small Molecules for OLEDs: Donor‐Acceptor Structure and Non‐Donor‐Acceptor Structure." Advanced Materials 23.9 (2011): 1137-1144.
[24] Ogawa, Hisahito, Masahiro Nishikawa, and Atsushi Abe. "Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films." Journal of Applied Physics 53.6 (1982): 4448-4455.
[25] C. Goldmann., et al. "Hole mobility in organic single crystals measured by a “flip-crystal” field-effect technique." Journal of Applied Physics 96.4 (2004): 2080-2086.
[26] Yasuda, Takeshi, et al. "Carrier mobilities in organic electron transport materials determined from space charge limited current." Japanese journal of applied physics 41.9R (2002): 5626.
[27] Borsenberger, Paul M., and David S. Weiss. Organic photoreceptors for imaging systems. Vol. 39. New York: M. Dekker, 1993.
[28] Ye, Jian, et al. "Recent development of organic electron transport materials." Progress in Natural Science 13.2 (2003): 81-87..
[29] Kokil, Akshay, Ke Yang, and Jayant Kumar. "Techniques for characterization of charge carrier mobility in organic semiconductors." Journal of Polymer Science Part B: Polymer Physics 50.15 (2012): 1130-1144.

[30] Saragi, Tobat PI, Thomas Fuhrmann‐Lieker, and Josef Salbeck. "Comparison of charge‐carrier transport in thin films of spiro‐linked compounds and their corresponding parent compounds." Advanced Functional Materials 16.7 (2006): 966-974.
[31] Veres, Janos, et al. "Low‐k insulators as the choice of dielectrics in organic field‐effect transistors." Advanced Functional Materials 13.3 (2003): 199-204.
[32] Warta, W., R. Stehle, and N. Karl. "Ultrapure, high mobility organic photoconductors." Applied Physics A 36.3 (1985): 163-170.
[33] Bässler, H. "Charge transport in disordered organic photoconductors a Monte Carlo simulation study." physica status solidi (b) 175.1 (1993): 15-56.
[34] Diao, Ying, et al. "Morphology control strategies for solution-processed organic semiconductor thin films." Energy & Environmental Science 7.7 (2014): 2145-2159..
[35] Su, Shi‐Jian, et al. "Highly efficient organic blue‐and white‐light‐emitting devices having a carrier‐and exciton‐confining structure for reduced efficiency roll‐off." Advanced Materials 20.21 (2008): 4189-4194.
[36] Gather, Malte C., Anne Köhnen, and Klaus Meerholz. "White organic light‐emitting diodes." Advanced Materials 23.2 (2011): 233-248.
[37] Yook, Kyoung Soo, and Jun Yeob Lee. "Bipolar Host Materials for Organic Light‐Emitting Diodes." The Chemical Record 16.1 (2016): 159-172.
[38] Lin, Ming-Shiang, et al. "A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices." Journal of Materials Chemistry 22.3 (2012): 870-876.
[39] Zhao, Cui-Hua, et al. "Highly emissive organic solids containing 2, 5-diboryl-1, 4-phenylene unit." Journal of the American Chemical Society 128.50 (2006): 15934-15935.
[40] 程裕仁。《以對稱三甲苯啡噻(口井)為中心之雙極性發光材料》。國立中正大學化學暨生物化學研究所,2015。
[41] Tsai, Yi-Wei, et al. "Bipolar transport materials for electroluminescence applications." Organic Electronics 30 (2016): 265-274.
[42] Lv, Xialei, et al. "Influence of the D/A ratio of 1, 3, 5-triphenylbenzene based starburst host materials on blue electrophosphorescent devices: a comparative study." RSC Advances 6.52 (2016): 46775-46784.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code