Responsive image
博碩士論文 etd-0722117-105222 詳細資訊
Title page for etd-0722117-105222
論文名稱
Title
厚度15 mm 的純銅板摩擦攪拌銲接之機械性質及微觀結構研究
Investigations on Mechanical Properties and Microstructure of Friction Stir Welded Pure Copper with 15 mm Thickness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-08-31
關鍵字
Keywords
導向彎曲試驗、拉伸強度、進給速度、純銅、摩擦攪拌銲接
guided bend test, Friction stir weld, pure copper, feed speed, tensile strength
統計
Statistics
本論文已被瀏覽 5678 次,被下載 13
The thesis/dissertation has been browsed 5678 times, has been downloaded 13 times.
中文摘要
本研究係使用傳統重型立式銑床及可量測軸向負荷的工作台,以高速鋼工具在工具傾角1.5°,工具轉速800、1000 rpm,進給速度分別為45、60、86 mm/min 之條件下,對厚度15 mm 的純銅板進行摩擦攪拌銲接。在固定進給速度情況下,尋找可銲接之工具轉速,討論工具探針之幾何尺寸及下壓方式對探針變形的影響。最終探討進給速度對銲接軸向負荷、銲接溫度及接合強度之影響,並透過微觀結構觀察說明進給速度對銲道機械性質的影響。
  實驗結果顯示,在單點銲接中,工具轉速800 rpm 條件下的持壓時間需要20秒溫度才能達到850°C,而工具轉速1000 rpm條件下只需持壓10秒溫度即能達到870°C;然而在固定進給速度60 mm/min,工具轉速800 rpm 條件下工具會與試片接合在一起,為不適合銲接之參數,故將工具轉速1000 rpm作為適合銲接參數。此外,在固定進給速度條件下,探討探針幾何尺寸之影響,固定根部直徑提高探針錐度能使探針變形量減少,然而固定探針錐度增加探針根部直徑會則使探針變形量增加;另一方面,對於下壓方式之影響,在試片中預孔能有效降低探針之變形量。由這些結果得知,在探針錐度40°、根部直徑14 mm及預孔條件下,能得到不變形之探針。
  此外,在進給速度45 ~ 86 mm/min 之條件下所得到的拉伸強度皆能達到母材拉伸強度的90%以上,伸長率亦有母材伸長率的75%以上。另一方面,隨著進給速度提升,試片底部的攪拌會較不均勻,在導向彎曲試驗下會出現較大的裂痕,但深度最大僅有1 mm,對接合強度並不影響。
Abstract
In this study, 15 mm thick pure copper plates were friction stir welded on condition that tool tilt angle 1.5°, tool rotating speeds of 800 and 1000 rpm and feed speeds of 45, 60, and 86 mm/min using high speed steel tool. Under the condition of constant speed to find weldable tool rotating speed, discuss effects of tool pin geometry size and plunge methods on the pin deformation. Finally, investigate influences of different feed speeds on downward force, temperatures and the joint strength and explain effects of different feed speeds on weld mechanical properties by microstructural observation.
  Experimental results show that the welding temperature achieved 850°C after dwell time of 20 seconds under tool rotating speed of 800 rpm condition; the welding temperature can achieve 870°C after dwell time of 10 seconds under tool rotating speed of 1000 rpm condition. However, tool bonded with workpieces under tool rotating speed of 800 rpm condition, so the tool rotating speed of 1000 rpm was suitable parameter rather than 800 rpm. In addition, under the condition of constant speed to discuss effects of tool pin geometry size. Fixed the root diameter, the pin deformation can decrease by increasing pin angle; however, fixed the pin angle were making pin deformation increased by increasing pin root diameter. On the other hand, pre-hole in workpieces can effectively decrease pin deformation. The results show that under the condition of pin angle of 40°, root diameter of 14 mm and pre-hole can get non deforming pin.
  In addition, the tensile strength of various feed speeds can achieve above 90% of base metal tensile strength, the elongations of various feed speeds also can achieve above 75% of base metal elongation. On the other hand, the stir of bottom of workpieces were more non-uniform with feed speed increased, it was appearing larger crack in guided bend test. The maximum depth of crack about 1 mm, it does not affect the joint strength.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 xi
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 銲接操作參數的影響 3
1.2.2 工具傾斜角對缺陷的影響 4
1.2.3 工具探針錐度的影響 5
1.2.4 純銅摩擦攪拌銲接之特性 6
1.2.5 不同厚度的純銅或銅合金之摩擦攪拌銲接探討 7
1.3 研究目的 17
第二章 實驗設備與方法 19
2.1 實驗設備 19
2.1.1 工作台 20
2.1.2 溫度量測背板 22
2.1.3 摩擦攪拌銲接工具與試片 23
2.2 實驗方法 25
2.3 銲道破壞試驗 28
2.4 金相觀察及微硬度試驗 31
2.5 實驗流程 32
第三章 實驗結果 33
3.1 工具轉速探討 33
3.1.1 單點銲接 33
3.1.2 進給銲接 38
3.2 銲接工具與下壓方式探討 43
3.2.1 探針尺寸對探針變形之影響 43
3.2.2 預孔對探針變形之影響 51
3.3 進給速度對軸向負荷及溫度之影響 59
3.4 進給速度對銲道強度之影響 67
3.5 銲道剖面之金相觀察 71
3.6 微硬度分布 75
3.7 長度300 mm 之長銲道摩擦攪拌進給銲接 76
3.8 長度300 mm 銲接試片之非破壞檢測 78
3.8.1 液體滲透檢測 (Liquid penetrant inspection) 78
3.8.2 射線檢測 (Radiographic inspection) 79
3.8.3 相位陣列式超音波檢測 (Phased array ultrasonic inspection) 80
第四章 結論與未來展望 85
4.1 結論 85
4.2 未來展望 87
參考文獻 88
參考文獻 References
[1] W.M. Thomas, E. D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes. (1991). Friction stir butt welding. International Patent Application. PCT/GB92/02203 and GB Patent Application 9125978.8.
[2] W.M. Thomas, E.D. Nicholas, R.E. Dolby, C.J. Jones and R.H. Lilley. Friction plug extrusion. International Patent. PCT/GB92/01540.21.8.92.
[3] M. Matsushita, Y. Kitani, R. Ikeda, K. Oi and H. Fujii. (2011). Development of friction stir welding of high strength steel sheet. Science and Technology of Welding and Joining, 16(2), 181-187.
[4] K. Nakata. (2005). Friction stir welding of copper and copper alloys. Welding International, 19(12), 929-933.
[5] M. Dehghani, A. Amadeh and S.A.A. Akbari Mousavi. (2013). Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Materials and Design, 49, 433-411.
[6] Y. Wei, J. Li, J. Xiong, F. Huang, F. Zhang and S.H. Raza. (2012). Joining aluminum to titanium alloy by friction stir lap welding with cutting pin. Materials Characterization, 71, 1-5.
[7] A. Abdollah-Zadeh, T. Saeid and B. Sazgari. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of Alloys and Compounds, 460(1-2), 535-538.
[8] R.S. Mishra and Z.Y. Ma. (2005). Friction stir welding and processing. Materials Science and Engineering R, 50(1-2), 1-78.
[9] Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata. (2006). Three defect types in friction stir welding of aluminum die casting alloy. Materials Science and Engineering A, 415(1-2), 250-254.
[10] H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang and Y. Zhao. (2006). The investigation of typical welding defects for 5456 aluminum alloy friction stir welds. Materials Science and Engineering A, 433(1-2), 64-69.
[11] G. Buffa, J. Hua, R. Shivpuri and L. Fratini. (2006). Design of the friction stir welding tool using the continuum based FEM model. Materials Science and Engineering A, 419(1-2), 381-388.
[12] Y.F. Sun and H. Fujii. (2010). Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Materials Science and Engineering A, 527(26), 6879-6886.
[13] I. Galvão, R.M. Leal, D.M. Rodrigues and A. Loureiro. (2013). Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. Journal of Materials Processing Technology, 213(2), 129-135.
[14] A. Heidarzadeh and T. Saeid. (2013). Prediction of mechanical properties in friction stir welds of pure copper, Materials and Design, 52, 1077-1087.
[15] H.J. Liu, J.J. Shen, Y.X. Huang, L.Y. Kuang, C. Liu and C. Li. (2009). Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper. Science and Technology of Welding and Joining, 14(6), 577-583.
[16] W.B. Lee and S.B. Jung. (2004). The joint properties of copper by friction stir welding. Materials Letters, 58(6), 1041-1046.
[17] H. Khodaverdizadeh, A. Heidarzadeh and T. Saeid. (2013). Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Materials and Design, 45, 265-270.
[18] A. Azizi, R. Vatankhah Barenji, A. Vatankhah Barenji and M. Hashemipour. (2016). Microstructure and mechanical properties of friction stir welded thick pure copper plates. The International Journal of Advanced Manufacturing Technology, 86(5-8), 1985-1995.
[19] 吳致穎(民國105年)。厚度10 mm 的純銅板之摩擦攪拌銲接研究。國立中山大學機械與機電工程研究所碩士論文。
[20] M. P. Groover. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems (4th ed.). United States of America: John Wiley & Sons Inc.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code