Responsive image
博碩士論文 etd-0722117-135516 詳細資訊
Title page for etd-0722117-135516
論文名稱
Title
氧化銅奈米結構成長於不同蝕刻矽基板對於乙醇氣體感測之影響
Effect of Copper Oxide Nanostructure on Different Etched Silicon Substrates to Ethanol Gas Sensitivity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-22
關鍵字
Keywords
乙醇氣體感測器、多孔矽、氧化銅、矽金字塔、矽奈米柱
Silicon nanorods, Silicon pyramids, Copper oxide, Porous silicon, Ethanol gas sensor
統計
Statistics
本論文已被瀏覽 5704 次,被下載 25
The thesis/dissertation has been browsed 5704 times, has been downloaded 25 times.
中文摘要
本論文探討氧化銅奈米結構成長於不同形貌之矽基板上(矽金字塔、矽奈米柱、多孔矽),以製備乙醇氣體感測元件。分別以不同濕式蝕刻法改變矽基板表面形貌。接著使用射頻濺鍍系統於蝕刻後矽基板沉積氧化銅種子層,並利用水熱法成長氧化銅奈米結構,完成氧化銅奈米結構/蝕刻矽元件。並分析三種不同蝕刻矽基板之複合結構物性與電性上的表現,比較對於乙醇氣體感測能力之影響。
實驗結果顯示,以蝕刻矽金字塔水熱成長氧化銅之複合結構具有最佳的靈敏度表現。在操作溫度150℃下,乙醇氣體濃度為800ppm時,靈敏度為94.99%。響應與恢復時間分別為31秒和40秒。氧化銅奈米結構/蝕刻矽金字塔擁有較佳的感測能力主要原因為金字塔結構有效增加乙醇氣體吸附之比表面積,能夠與大量的氣體分子進行吸附並反應。此外,矽金字塔與平面矽之夾角為45°,形成與乙醇氣體分子較容易接觸之表面形貌。元件之異質接面使得能障提升,從而降低元件之漏電流。因此,高感測能力之乙醇氣體感測器未來可應用於酒測值檢測或是工業安全檢測,亦可改善相關產品之發展。
Abstract
In this thesis, we develop the nanostructure of copper oxide on silicon substrates with different morphologies (silicon pyramids, silicon nanorods, porous silicon) for ethanol gas sensors. The morphologies of silicon substrates are etched by different wet etching methods. After etching, the copper oxide seed layers are deposited on silicon substrates by RF sputtering system. The nanostructure of copper oxide is formed by hydrothermal method. The sensing elements of copper oxide nanostructure/etched-Si are completed. The physical and electrical properties of the devices with three different etching silicon substrates are analyzed and compared the performances to ethanol gas.
According to the experimental results, the device with silicon pyramids has the best sensitivity of 94.99% under 150℃ and 800ppm ethanol gas. The response and recovery times are 31 seconds and 40 seconds. The main reason for the best sensitivity of copper oxide nanostructure/etched-Si pyramids is the large surface area for the absorption of ethanol gas. Large area and absorb and react with a large number of gas molecules. Besides, the angle between the silicon pyramid and the silicon plane is 45°. The formation of the surface is easier for ethanol gas molecules to contact. In addition, the heterojunctions can raise the potential barrier height thus reducing leakage current. Therefore, the ethanol sensor with high sensitivity can be applied to breath alcohol test or industrial safety management. It can also improve the development of related products.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 viii
圖目錄 iix
第一章 概論 1
1-1 前言 1
1-2 氣體感測器 1
1-3 乙醇介紹 2
1-4 氧化銅介紹 2
1-5 奈米結構介紹 3
1-6 論文架構 4
第二章 理論基礎 5
2-1 氣體感測器工作原理 5
2-2 PN異質接面氣體感測器理論 6
2-3 氧化銅奈米結構水熱法成長原理 8
2-3-1 水熱法原理 8
2-3-2 氧化銅奈米結構之生長機制 8
2-4 濕式蝕刻理論 9
2-4-1 矽金字塔陣列蝕刻理論與機制 10
2-4-2 矽奈米柱蝕刻理論與機制 11
2-4-3 多孔矽蝕刻理論與機制 12
2-5 濺鍍理論 14
2-5-1 濺鍍簡介 14
2-5-2 濺鍍原理 14
2-5-3 薄膜沉積現象 15
2-6 蒸鍍理論 16
2-7 掃描式電子顯微鏡(Scannig Electron Microscope,SEM) 17
2-8 X光繞射儀(X-ray diffractometer,XRD) 19
2-9 乙醇氣體量測 19
第三章 實驗步驟與儀器介紹 21
3-1 材料選用 21
3-2 成長系統 23
3-2-1 射頻濺鍍系統(RF Sputtering System) 23
3-2-2 真空熱蒸鍍系統(Thermal Vacuum Evaporation System) 24
3-3 量測儀器 25
3-3-1 場射型掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM) 25
3-3-2 X光繞射儀(X-ray diffraction, XRD)25
3-3-3 氣體感測器量測系統 25
3-4 製程步驟與成長參數 26
3-4-1 矽基板清洗流程 26
3-4-2 矽金字塔蝕刻 27
3-4-3 矽奈米柱蝕刻 27
3-4-4 多孔矽蝕刻 28
3-4-5 氧化銅薄膜種子層之濺鍍沉積 29
3-4-6 水熱生長氧化銅奈米結構 29
3-4-7 使用熱蒸鍍系統沉積鋁電極 30
第四章 結果與討論 31
4-1 物性分析 31
4-1-1 蝕刻矽奈米結構(金字塔、奈米柱、多孔)之比較 31
4-1-2 氧化銅奈米結構成長於不同蝕刻矽基板之比較 32
4-1-3 蝕刻矽奈米結構表面氧化銅覆蓋率之計算 33
4-2 電性分析 33
4-2-1 氧化銅奈米結構成長於不同蝕刻矽基板之電流-電壓特性分析 33
4-2-2 元件在不同操作環境下之靈敏度比較 34
4-2-3 元件響應與恢復時間之探討 35
第五章 結論與未來展望 36
5-1 實驗結果歸納 36
5-2 未來展望 37
參考文獻 38
附表 42
附圖 44
參考文獻 References
[1] 全國法規資料庫。道路交通安全規則;2017。
[2] 全國法規資料庫。道路交通管理處罰條例;2016。
[3] 蔡中志,馬士軒,“駕駛人酒精濃度與肇事嚴重度關聯性之探討-以桃園縣為例”,交通安全與執法研討會;2014。
[4] Phathaitep Raks, Atcharawan Gardchareon, Torranin Chairuangsri, Pongsri Mangkorntong, Nikorn Mangkorntong, Supab Choopun, “Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction,” Ceramics International Volume 35, Issue 2, March 2009, Pages 649–652.
[5] D. Gopalakrishna, K. Vijayalakshmi, C. Ravidhas, “Effect of annealing on the properties of nanostructured CuO thin films for enhanced ethanol sensitivity,” Ceramics International, Volume 39, Issue 7, September 2013, Pages 7685–7691.
[6] “奈米科技及應用之產業分析與投資機會”,經濟部投資業務,2008。
[7] Yude Wang, Jingbo Chen, Xinghui Wua, “Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide,” Materials Letters 49, 2001, Pages 361–364.
[8] Hyo-Joong Kim, Jong-Heun Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sensors and Actuators B: Chemical, Volume 192, 1 March 2014, Pages 607–627.
[9] Ming-Ru Yu a, Gobalakrishnan Suyambrakasam, Ren-Jang Wua, Murthy Chavali, “Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor,” Materials Research Bulletin 47, 2012, Pages 1713–1718.
[10] S. M. Sze, “Physics of semiconductor devices,” ch5, wiley, New York, 1980.
[11] Neamen, “Semiconductor physics and device,” ch9, McGraw-Hill, 1992, p336.
[12] Z.H. Ibupoto, K. Khun, X. Liu, M. Willander, “Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection,” Materials Science and Engineering C, Volume 33, October 2013, Pages 3889–3898.
[13] Donald A. Neamen 著,李世鴻、陳勝利譯,半導體元件物理,台商圖書,1998。
[14] 施敏、張俊彥,半導體元件與物理與製作技術,高立圖書公司,1996。
[15] H Seidel, L Csepregi, A Heuberger, and H Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part I. Orientationdependence and behavior of passivation layer,” J Electrochem. Soc, vol.137, No. 11, November 1990, Pages 3612.
[16] H Seidel, L Csepregi, A Heuberger, and H Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part II. Influence ofdopants,” J. Electrochem. Soc, vol. 137, No. 11, November 1990, Pages 3626.
[17] Q. Micheal, S. Julian, “Semiconductor ManufacturingTechnology,” Prentice Hall, Pages 443.
[18] D. B. Lee, “Anisotropic etching of silicon,” Journal of Applied Physics, vol. 40, 1969, Pages 4569.
[19] T. Baum, D. J. Schiffrin, “AFM study of surface finish improvementby ultrasound in the anisotropic etching of Si<100> in KOH formicromachining applications,” J. Micromech. Microeng, 1997, Pages 338.
[20] Ruiyuan Liu, Fute Zhang, Celal Con, Bo Cui, Baoquan Sun, “Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching,” Nanoscale Research Letter, vol. 8, Issue 1, 4 Apr 2013.
[21] D. B. Turner, “Electropolishing silicon in hydrofluoric acid solutions,” Journal of the Electrochemical Society, vol. 105, 1958, Pages 402.
[22] R. L. Smith and S. D. Collins, “Porous Silicon Formation Mechanisms,” Journal of Applied Physics, vol. 71, 1992, Pages R1-R22.
[23] V. Lehmann, U. Gosele, “Porous silicon formation: A quantum wire effect,” Applied Physics Letters, vol. 58, 1991, Pages 856-858.
[24] A. Halimaoui, “Porous silicon: material processing, properties and applications,” Chapter Porous silicon science and technology, Centre de Physique des Houches, vol. 1, 1994, Pages 33-52.
[25] Dennis R. Tuner, “Electropolishing Silicon in Hydrofluoric Acid Solution,” J. Electrochem. Soc., vol. 105, 1958, Pages 402-408.
[26] L. N. Aleksandrov, P. L. Novikov, “Morphology of porous silicon structures formed by anodization of heavily and lightly doped silicon,” Thin Solid Films, vol. 330, 1998, Pages 102-107.
[27] 賴耿陽,“C製程之濺射技術”,復漢出版社,1997年。
[28] 蕭宏,“半導體製程技術導論”,歐亞書局有限公司,12月2001年,Pages 221-240。
[29] 莊達人,VLSI製造技術,高立圖書股份有限公司,1995。
[30] 蕭宏,“半導體製程技術導論”,歐亞書局有限公司,12月2001年,Pages 458-461。
[31] 楊雲凱,“物理氣相沉積(PVD)介紹”,奈米通訊NANO COMMUNICATION 22卷NO.4,Pages 33-35。
[32] 羅聖全,“科學基礎之重要利器-掃描式電子顯微鏡(SEM) ”,科學研習,台灣中央大學,2013年5月,Pages 52。
[33] 蔡坤龍,“X-射線技術於環境化學分析之應用”,環境檢驗電子報,第二十二期。
[34] 許樹恩,吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會,1992。
[35] Koustuv Chatterjee, David Dollimore, Kenneth Alexander, “A new application for the Antoine equation in formulation development International,” Journal of Pharmaceutics, Volume 213, Issues 1–2, 1 February 2001, Pages 31–44.
[36] George WM. Thomson, “The antoine equation for vapor-pressure data” Chemical Reviews, 23 May 1946, Pages 1-39.
[37] Thomas C. Gregory,“化學藥品辭典”,益群書店股份有限公司,1992。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code