Responsive image
博碩士論文 etd-0722117-163052 詳細資訊
Title page for etd-0722117-163052
論文名稱
Title
應變速率對多相中錳鋼冷軋板之組織與拉伸性質之影響
Effect of strain rate on microstructure and tensile properties of a cold-rolled multi-phase medium Mn steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-18
繳交日期
Date of Submission
2017-08-23
關鍵字
Keywords
先進高強度鋼、應變速率、顯微組織、拉伸性質、TRIP效應
strain rate, microstructure, tensile property, AHSS, TRIP effect
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
本實驗研究Fe-5.3Mn-2.3Al-1.1Si-0.35C多相中錳鋼,經冷軋退火程序,在不同應變速率下對於顯微組織及拉伸特性的影響。研究之應變速率分別為5×〖10〗^(-2)/s、〖10〗^(-2)/s、〖10〗^(-3)/s、〖10〗^(-4)/s、〖10〗^(-5)/s。實驗發現在不同應變速率下的降伏強度幾乎維持不變,而伸長量以及拉伸強度則隨著應變速率降低而上升,而伸長量越高的試片有著更大的麻田散鐵相變化率。實驗也發現以高應變速率拉伸時(e.g.: 5×〖10〗^(-2)/s),試片會有較明顯的頸縮及不均勻變形現象,其破斷面呈現凹凸不平且有大量細小而深的dimples;反之,以低應變速率拉伸時(ex: 〖10〗^(-5)/s),試片則為均勻的變形,幾乎沒有頸縮發生,破斷面呈現較平坦的階梯狀且有沿TD方向的裂痕。雖然5×〖10〗^(-2)/s以及〖10〗^(-5)/s這兩種的應變速率有著不同的變形行為,在28.5%的應變量以XRD及EBSD分析α及γ相分率時兩者差異不大,且SEM顯微結構觀察下並沒有顯著的差異。在40%應變量時,以EBSD分析發現不同應變速率下的拉伸試片,雖然有不同的局部應變,但發現其相變化率對面積縮減率有一致趨勢的關係:儘管不同應變速率會影響試片是否均勻變形,但在局部區域的應變量相近時,其應變誘發麻田散鐵相變化率是相近的。另外,針對5×〖10〗^(-2)/s、〖10〗^(-2)/s、〖10〗^(-3)/s進行拉伸過程的溫度量測,發現隨著應變速率增加,試片局部升溫情形更加劇烈。
Abstract
This study investigates the effect of strain rate on the microstructure and tensile properties of a Fe-5.3Mn-2.3Al-1.1Si-0.35C medium manganese steel. The experiments were performed at strain rates of 5×〖10〗^(-2)/s、〖10〗^(-2)/s、〖10〗^(-3)/s、〖10〗^(-4)/s、〖10〗^(-5)/s. The results show that yield strength hardly changes under different strain rates, however, the tensile strength and elongations are increased with decreasing strain rates. The specimen with larger elongations tends to have more deformation-induced martensitic transformation. The specimens tested at high strain rate(5×〖10〗^(-2)/s) was less uniform deformed, and had clear necking phenomenon. Moreover, the fracture surfaces are rugged and full of small but deep dimples. On the other hand, the specimens tested at low strain rate(〖10〗^(-5)/s.) was uniform deformed and had negligible necking. Unlike to high strain rate case, fracture surfaces are more smooth and in scalariform. In addition, cleavage-like void bands elongate in the transverse direction are also observed. Although the tensile behavior are entirely different when tested between 5×〖10〗^(-2)/s and 〖10〗^(-5)/s, the microstructures observed by SEM and the volume fractions of ferrite and austenite phase measured by EBSD and XRD are almost the same at an engineering strain of 28.5%. It is also found that area reduction of the specimen is related to deformation induced phase transformation fraction. Under different strain rate, for similar local specimen strain, the phase transformation fraction is nearly the same. Local temperature at the gauge part of a specimen rises more significantly with increasing strain rate.
目次 Table of Contents
目錄
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 xiii
一、前言 1
二、文獻回顧 2
2-1 TRIP鋼 2
2-2 麻田散鐵 2
2-2-1麻田散鐵生成方式 2
2-2-2麻田散鐵形貌 3
2-2-3麻田散鐵誘發形式 4
2-2-4麻田散鐵的成核 5
2-3應變速率的影響 6
三、研究目的 16
四、實驗方法 17
4-1 實驗材料 17
4-2 實驗步驟 17
4-3 拉伸試驗 17
4-4 顯微組織分析 18
4-5 拉伸過程之溫度量測 19
五、實驗結果 20
5-1試片巨觀形貌 20
5-2試片破斷面形貌 20
5-3拉伸性質 20
5-4 顯微組織分析 22
5-4-1 拉伸至破斷 22
5-4-2 應變量28.5% 22
5-4-3 應變量40% 23
5-5 拉伸過程之溫度量測 24
六、討論 25
6-1 應變速率對絕熱效應的影響 25
6-2 應變速率對應變誘發麻田散鐵相變化的影響 26
6-3 應變速率對拉伸性質的影響 27
6-3-1應變速率對均勻變形的影響 27
6-3-2應變速率對拉伸強度、降伏強度、伸長量及加工硬化率的影響 28
6-3-3應變速率對破斷型態的影響 29
6-4 與相同材料之應變速率1~10/s的拉伸實驗比較 30
七、結論 31
八、參考文獻 32
參考文獻 References
參考文獻
[1] B. C. De Cooman, Current Opinion in Solid State and Materials Science, 2004. 8: 285-303.
[2] Pisarik, S.T., Van Aken, D. C., Metallurgical and Materials Transactions A, 2014. 45: 3173-3178.
[3] Hisashi, S., Stefan, Z., Acta Materialia, 2009. 57: 1931-1937.
[4] Kitahara.H. , U.R., Tsuji.N. , Minamino.Y, Acta Materialia, 2006. 54: 1279-1288.
[5] S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki, Acta Materialia, 2003. 51: 1789-1799.
[6] Krauss, G., Materials Science and Engineering: A, 1999. 273-275: 40-57.
[7] Shibata, A., Morito, S., Furuhara, T., Maki, T., Acta Materialia, 2009. 57(2): 483-492.
[8] D. Fahr, Matallurgical Transactions, 1970. 2: 1971-1883
[9] P. C. Maxwell, A. Goldberg and J. C. Shyne, Metallurgical transactions, 1974. 5: 1305-1318.
[10] G. B. Olson and M. Cohen, Metall. Trans. 1975, 6A, 791-5.
[11] J. Talonen and H. Hänninen, Acta Materialia, 2007. 55: 6108-6118.
[12] G. B. Olson and Morris Cohen:Met. Trans. 1976, A, 7A, 1897-1923.
[13] Staudhammer, K.P., L.E. Murr, S.S. Hecker, Acta Metallurgica, 1983. 31: 267-274.
[14] L. E. Murr, K. P. Staudhammer, and S. S. Hecker, Metall. Trans. A, 1982, vol. 13A, 627-635.
[15] I. Tamura, Metal Sci. 1982, 245-53.
[16] I. Tamura, T. Maki, H. Hato. Y. Tomota. and M. Okada: Proc. Second Int. Conf. on 'Strength of metals and alloys', 1970, 3, 900;70.
[17] Ferreira PJ, Vander Sande JB, Amaral Fortes M, Kyröläinen A. Metall Mater Trans A 2004; 35:3091.
[18] S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, 63, 212-22.
[19] W.-S. Lee and C.-F. Lin: Scripta Mater. 2000, 43, 777-82.
[20] W.-S. Lee and C.-F. Lin: Metall. Mater. Trans. A, 2002, 33A, 2801-10.
[21] W.-S. Lee and C.-F. Lin: Mater. Sci. Eng. A, 2001, A308, 124-35.
[22] J. Talonen, P. Nenon, G. Pape, and H. Hänninen, Metall. Mater. Trans. 2005, 36A, 421-32.
[23] S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, 13A, 619-26.
[24] J. Huh, H. Huh, and C. S. Lee, Int. J. Plast., 2013, 44, 23-46.
[25] Peixinho, N., Pinho, A. In: Proceedings of EURODYN, 2005. 1767-1771.
[26] Choi, I., Son, D., Kim, S., Matlock, D., Speer, J. Technical Report. SAE 2006–01-1434.
[27] Huh, H., Kim, S.B., Song, J.H., Lim, J.H. International Journal of Mechanical Sciences, 2008. 50, 918–931.
[28] Kapoor, R., Nemat-Nasser, S. Mechanics of Materials, 1998. 27, 1–12.
[29] J.A. Jimenez, M. Carsi, O.A. Ruano, G. Frommeyer, Materials Science and Engineering A, 2009. 508. 195–199.
[30] Zbigniew Gronostajski, Adam Niechajowicz, Roman Kuziak, Jakub Krawczyk,Sławomir Polak, Journal of Materials Processing Technology 2017. 242, 246–259.
[31] Bleck, W., Schael, I. Steel Res. 2000. 71, 173–178.
[32] Pychmintsev, I.Y., Savrai, R.A., De Cooman, B.C., Moriau, O. Aachen, 2002, 299–302.
[33] Tsuchida, N., Yamaguchi, Y., Morimoto, Y., Tonan, T., Takagi, Y. ISIJ Int. 2013, 53, 1881–1887.
[34] He, Z., He, Y., Ling, Y., Wu, O., Gao, Y., Li, L. J. Mater. Process. Technol. 2012, 2141–2147.
[35] Tsuchida, N., Morimoto, Y., Tonan, T., Shibata, Y., Fukaura, K., Ueji, R. ISIJ Int. 2011. 51, 124–129.
[36] Brühl, S., Bleck, W. Tagungsband zum 26.Aachener Stahlkolloquium Werkstofftechnik, Stahl Strukturen – Industrie-,Forschungs-, Mikro-, Bauteilstrukturen, Aachen. Hrsg, 2011. 113–124.
[37] Choi, J., Lee, J., Lee, K., Koh, J., Cho, J., Han, H., Park, K. Mater. Sci. Eng.A , 2016. 666, 280–287.
[38] Gao, Y., Xu, C., He, Z., He, Y., Li, L. J. Iron Steel Res. 2015, Int.22, 48–54.
[39] Rusinek, A., Klepaczko, J.R. Mater. Des. 2009. 30, 35–48.
[40] T. Y. Hsu, Martensitic Transformation and Martensite, Science Press, Beijing, 1999.
[41] Ji-Hoon Kim, DaeyongKim, HeungNamHan, F.Barlat, Myoung-GyuLee, Materials Science & Engineering. 2013, A 559, 222–231.
[42] S. Curtze, V.-T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Eng. 2009, A 507, 124–131.
[43] X. Sun, A. Soulami, K.S. Choi, O. Guzman, W. Chen, Mater. Sci. Eng. 2012, A 541, 1–7.
[44] J. Van Slycken, P. Verleysen, J. Degrieck, J. Bouquerel, B.C. De Cooman, Mater. Sci. Eng. 2007, A 460–461 , 516–524.
[45] TAOTSUNG SHUN, C. M. WAN and J. G. BYRNE. Acta metall, mater. 1992, 40, 12, 3407-3412
[46] D. Canadinc, C. Efstathiou, H. Sehitoglu, Scripta Materialia , 2008, 59, 1103-1106.
[47] Sangwon Lee, Yuri Estrin, Bruno C. De Cooman, Metallurgical and Materials Transactions A, 2014, 45, Issue 2, 717–730.
[48] 國立中山大學, 吳冠葦, 未發表之實驗數據. 2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.143.31
論文開放下載的時間是 校外不公開

Your IP address is 3.144.143.31
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code