Responsive image
博碩士論文 etd-0722117-221816 詳細資訊
Title page for etd-0722117-221816
論文名稱
Title
三氮唑吡啶之衍生物之載子傳輸特性研究
Study of Carrier Transport Properties of Triazolopyridine Derivatives
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-08-22
關鍵字
Keywords
咔唑、三苯胺、飛行時間法、載子遷移率、有機半導體、三氮唑吡啶
Organic semiconductor, Carrier mobility, Time of flight, Carbazole, Triphenylamine, Triazolopyridine
統計
Statistics
本論文已被瀏覽 5653 次,被下載 18
The thesis/dissertation has been browsed 5653 times, has been downloaded 18 times.
中文摘要
近年來有機半導體逐漸被應用在小尺寸的行動裝置顯示器上,但如何使有機半導體元件效率提升是許多學者一致努力的方向,其中一項重要參數為材料的載子遷移率,因此如何提高載子遷移率及發展雙載子傳遞速度匹配的材料是研究學者的重要目標。
  本論文藉由飛行時間量測法 (Time of Flight,TOF)探討一系列新開發的有機半導體材料的載子遷移率,此系列材料為三氮唑吡啶 (Triazolopyridine)之衍生物。此系列材料結構同時含有具傳遞電洞特性的三苯胺 (Triphenylamine)分子或咔唑 (Carbazole)分子與具傳遞電子特性的三氮唑吡啶 (Triazolopyridine)基團,以飛行時間量測法鑑定後確認此系列材料皆具有雙載子傳輸特性,在電場強度為3.3×10^5 至8.6×10^5 V ⁄cm區間,電子遷移率介於8.4×10^-5至5.4×10^-4 cm^2/Vs區間,電洞遷移率介於7.3×10^-4至1.5×10^-4 cm^2 /Vs區間" ,此論文亦同時探討此系列材料的立體結構與載子傳輸特性的相關性。
Abstract
Organic semiconductor materials have been gradually apply to small-size mobile displays in recent years. To further improve the efficiency of organic devices, one of the most important work is developing the materials with bipolar carrier-transporting properties.
In this thesis, carrier transport properties of a new series of organic materials have been studied by time-of-flight (TOF) method. Those materials are triazolopyridine derivatives. Triphenylamine or carbazole moiety are also conducted for hole-transporting capability, and triazolopyridine is conducted for electron-transport capability. All the materials in this thesis show bipolar carrier transporting property. The mobilities of electrons are between 8.4×10^-5 to 5.4×10^-4 cm^2/Vs in the electric field between 3.3×10^5 to 8.6×10^5 V⁄cm. The mobilities of holes are between 7.3×10^-4 to 1.5×10^-4 cm^2/Vs in the electric field between 3.3×10^5 to 8.6× 10^5 V ⁄cm. This thesis also discusses the relationship between the molecular structure and the carrier transporting properties of those materials.
目次 Table of Contents
摘要i
Abstractii
圖目錄iiv
表目錄v
第一章 緒論1
1-1 前言1
1-2 有機半導體載子傳遞機制1
1-3載子傳遞特性對有機發光二極體之影響6
1-4 研究動機與目的7
第二章 實驗方法11
2-1前言10
2-2實驗設備介紹10
2-2-1熱純化系統10
2-2-2超音波震盪激11
2-2-3低水氧手套箱12
2-2-4高真空熱蒸鍍系統12
2-3飛行時間法 (TOF)量測法15
2-3-1 原理與機制15
2-3-2 光激電流訊號分析16
2-4實驗元件製作過程20
2-4-1 基板清洗21
2-4-2 元件蒸鍍21
2-4-3 元件封裝22
2-5材料合成之結構與概念23
第三章 實驗結果與討論25
3-1載子傳輸特性25
3-1-1 材料TRP-01 26
3-1-2 材料TRP-02 29
3-1-3 材料TRP-03 32
3-1-4 材料TRP-04 35
3-2 結果與討論38
第四章 結論44
參考文獻45
參考文獻 References
[1] B. Geffroy, P. L. Roy and C. Prat. “Organic light-emitting diode (OLED) technology: materials, devices and display technologies.” Polymer International, 55 (6), 2006, pp 572–582.
[2] D. Wohrle and D. Meissner. “Organic Solar Cell.” Advanced Materials. 3 (3), 1991, pp 129-138.
[3] H. Klauk. “Organic thin-film transistors.” Chemical Society Reviews. 39 (7), 2010, pp 2643-2666.
[4] 陳金鑫;黃孝文,“OLED:有機電激發光材料與元件”,五南圖書出版股份有限公司,2005。
[5] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm. “Ink-jet printing of doped polymers for organic light emitting devices.” Applied Physics Letters, 72 (5), 1998, pp 519-521.
[6] H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng. “A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode” Advanced Functional Materials, 20 (17), 2010, pp 2893–2902.
[7] M. Ramuz, B. C. K. Tee, J. B. H. Tok, and Z. Bao. ” Transparent, Optical, Pressure-Sensitive Artifi cial Skin for Large-Area Stretchable Electronics.” Advanced Materials, 24 (24), 2012, pp 3223–3227.
[8] L. Duan, J. Qiao, Y. Sun, and Y. Qiu. “Strategies to Design Bipolar Small Molecules for OLEDs: Donor-Acceptor Structure and Non-Donor-Acceptor Structure.” Advanced Materials, 23 (9), 2011, pp 1137–1144.
[9] V. Hernandez and G. Zerbi. “Confinement potential and π-electron delocalization in polyconjugated organic materials.” Physical Review B, 50 (14), 1994, pp 9815-9823.
[10] G. R. Pfister. “Hopping transport in a molecularly doped organic polymer.” Physical Review B, 16 (8), 1977, pp 3676-3687.
[11] J. G. Simmons. “Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems.” Physical Review Letters, 155 (3), 1967, pp 657-660.
[12] B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess. “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices.” IEEE Journal of Selected Topics in Quantum Electronics, 9 (3), 2003, pp 723-731.
[13] X. Zhang, B. Mo, F. You, L. Liu, H. Wang and B. Wei. “Highly-efficient low-voltage organic light-emitting diode by controlling hole transporting with doped dual hole-transport layer and the impedance spectroscopy analysis.” Synthetic Metals, 205 , 2015, pp 134-138.
[14] C. W. Tang and S. A. VanSlyke. “Organic electroluminescent diodes.” Applied Physics Letters, 51 (12), 1987, pp 913-915.
[15] S. J. Su, E. Gonmori, H. Sasabe, and J. Kido. “Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off.” Advanced Materials, 20 (21), 2008, pp 4189–4194.
[16] V. E. Choong, S. Shi, J. Curless, C. L. Shieh, and H. C. Lee. “Organic light-emitting diodes with a bipolar transport layer.” Applied Physics Letters, 75 (2), 1999, pp 172-174.
[17] J. Ye, H. Chen, M. Shi and M. Wang. “Recent development of organic electron transport materials.” Progress in Natural Science, 13 (2), 2003, pp 81-87.
[18] X. Su, M. D. Liptak and I. Aprahamian. “Water soluble triazolopyridiniums as tunable blue light emitters.” Chemical Communications, 49 (39), 2013, pp 4160-4162.
[19] J. Wang, K. Liu, L. Ma, and X. Zhan. “Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells” Chemical Reviews, 116 (23), 2016, pp 14675−14725.
[20] D. M. Pai, J. F. Yanus, and M. Stolka. “Trap-Controlled Hopping Transport.” Physical Chemistry, 88 (20), 1984, pp 4714–4717.
[21] 伍秀菁、汪若文及林美吟,”真空技術與應用”,行政院國家科學委員會精密儀器發展中心,2001。
[22] N. Yazdani, D. Bozyigit, O. Yarema, M. Yarema, and V. Wood. “Hole Mobility in Nanocrystal Solids as a Function of Constituent Nanocrystal Size.” Physical Chemistry Letters, 5 (20), 2014, pp 3522−3527.
[23] H. Nakanotani, K. Masui, J. Nishide1, T. Shibata and C. Adachi. “Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence.” Scientific Reports, 3 (2127), 2013, pp 1-5.
[24] G. G. Malliaras, Y. Shen, D. H. Dunlap, H. Murata, and Z. H. Kafafi. “Nondispersive electron transport in Alq3.” Applied Physics Letters, 79 (16), 2001, pp 2582-2584.
[25] D. Y. Kondakov. “Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes.” Applied Physics, 104 (8), 2008, pp 1-9.
[26] R. A. Klenkler, H. Aziz, A. Tran, Z. D. Popovic and G. Xu. “High electron mobility triazine for lower driving voltage and higher efficiency organic light emitting devices.” Organic Electronics, 9 (3), 2008, pp 285–290.
[27] D. S. Leem, S. Y. Kim, J. J. Kim, M. H. Chen, and C. I. Wu. “Rubidium-Carbonate-Doped 4,7-Diphenyl-1,10-phenanthroline Electron Transporting Layer for High-Efficiency p-i-n Organic Light Emitting Diodes.” Electrochemical and Solid-State Letters, 12 (1), 2009, pp 8-10.
[28] W. Pisula, X. Feng, and K. Mullen. “Charge-Carrier Transporting Graphene-Type Molecules.” 23 (3), 2011, pp 554-567.
[29] L. Duan, J. Qiao, Y. Sun, and Y. Qiu. “Strategies to Design Bipolar Small Molecules for OLEDs: Donor-Acceptor Structure and Non-Donor-Acceptor Structure.” Advanced Materials, 23 (9), 2011, pp1137-1144.
[30] P. M. Borsenberger, L. Pautmeier, R. Richert and H. Bässler. “Hole transport in 1,1‐bis(di‐4‐tolylaminophenyl)cyclohexane.” Journal of Chemical Physics, 94 (12) 1991, pp 8276-8281.
[31] S. Noh, C. K. Suman, Y. Hong, and C. Lee. “Carrier conduction mechanism for phosphorescent material doped organic semiconductor.” Journal of Applied Physics, 105 (3), 2009, pp 1-5.
[32] Y. Q. Li, M. K. Fung, Z. Xie, S. T. Lee, L. S. Hung and J. Shi. “An Efficient Pure Blue Organic Light-Emitting Device with Low Driving Voltages.” Advanced Materials, 14 (18), 2002, pp 1317-1321.
[33] 楊佳容,“三氮唑吡啶之衍生物應用於有機發光二極體之研究”,國立中山大學碩士論文,2016。
[34] 邱俊維,“有機非線性光學材料DAPSH晶體之製備及性質分析”,國立台北科技大學碩士論文,2007。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code