Responsive image
博碩士論文 etd-0722117-235342 詳細資訊
Title page for etd-0722117-235342
論文名稱
Title
重組腺病毒Irisin的製備與特性分析
Generation and Characterization of Recombinant Adenovirus Encoding Irisin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-04
繳交日期
Date of Submission
2017-08-23
關鍵字
Keywords
糖質新生、基因治療、血管新生、肥胖、Irisin、肌肉激素
angiogenesis, gene therapy, obesity, myokines, Irisin, gluconeogenesis
統計
Statistics
本論文已被瀏覽 5743 次,被下載 0
The thesis/dissertation has been browsed 5743 times, has been downloaded 0 times.
中文摘要
運動為控制肥胖及代謝綜合症有效的方法之一。Irisin是透過肌肉中的FNDC5被蛋白質水解酶切割後產生,其含有112個胺基酸。Irisin透過增加粒線體生成以及能量的消耗來增強白色脂肪棕色化和產熱效應,進而降低體重與降低胰島素抗性。由於Irisin具有抗肥胖的效果及高度的演化保守性,從2012年被發表後,Irisin即被認為是具有發展性的代謝疾病治療策略。因此,為了對抗肥胖綜合症,基因治療可能可以作為代謝疾病患者的治療方針。有鑑於此,本研究目的為製備重組腺病毒Irisin且應用於各類型細胞/器官,進一步評估其治療潛力與機制。首先,我們利用E. coli表現並純化重組蛋白Irisin,結果顯示Irisin分子量在14 kDa。接著,我們將重組蛋白Irisin打入實驗動物(兔子),爾後,利用protein G Sepharose 親和層析法,從血清中純化得到Irisin抗體。另外,利用氯化銫超高速離心製備與純化重組腺病毒FNDC5 (Ad-FNDC5) 及重組腺病毒Irisin (Ad-Irisin)。為了闡明FNDC5 / Irisin在不同類型細胞中是否分泌表現,我們在內皮細胞 EA.hy926、肌肉細胞 C2C12、肝臟細胞 Clone-9 和胚胎腎細胞 HEK293進行基因傳送。西方墨點法 (immunoblot analysis) 和酵素免疫分析法 (ELISA) 的結果發現:Ad-Irisin 在四種類型細胞皆能增加Irisin的分泌; 然而,Ad-FNDC5僅在C2C12與Clone-9細胞中被切割且增加Irisin 分泌。此外,Ad-Irisin基因傳送能增加內皮細胞的遷移及細胞增生能力,此項結果驗證了Irisin促進血管新生的能力。另外,實驗結果亦發現:Ad-Irisin基因傳送可增強肝臟細胞AMPK/Akt訊號路徑的活性並抑制PEPCK的表現量,此項結果闡明了Irisin 在糖質新生中可能扮演的角色。本研究建立研究Irisin的基礎工具,未來有助於應用於不同細胞/器官中,並且能應用於評估Irisin 治療人類各種疾病的潛力。
Abstract
Exercise represents one of the most effective approaches for control of obesity and metabolic syndromes. Irisin is a 112-residue myokine secreted by skeletal muscle through proteolytical cleavage from its precursor fibronectin type III domain containing 5 (FNDC5). Irisin stimulates brown fat-like development from white fat and thermogenesis through increasing mitochondria genesis and energy expenditure, thereby reducing body weight and insulin resistance. Because of its anti-obesity effects and evolutionary conservation, Irisin has been proposed as a promising therapeutic agent for metabolic diseases since its discovery in 2012. To combat the obesity syndrome, gene therapy approached may be required for long-term management of patients with metabolic diseases. Thus, the present study aims to generate the recombinant adenovirus vectors for Irisin production in various types of cells/organs, thereby evaluating their therapeutic potential and mechanism. Recombinant irisin was expressed and purified from E. coli with an apparent molecular weight of 14 kDa. The anti-irisin antibody was raised by periodical injection of recombinant irisin into rabbit and purified from serum using protein G Sepharose affinity chromatography. For gene delivery, adenovirus vector encoding FNDC5 (Ad-FNDC5) and irisin (Ad-irisin) were generated and purified by cesium chloride ultracentrifugation. To investigate the profile of FNDC5/irisin expression in different types of cells, endothelial EA.hy926, muscle C2C12, hepatocytes Clone-9, and embryonic kidney HEK293 cells were employed for adenovirus gene delivery. By immunoblot analysis and enzyme-linked immunoassay (ELISA), it was found that Ad-irisin effectively transduced and conferred irisin secretion in all four types of cells whereas Ad-FNDC5 evoked moderate irisin secretion only in C2C12 and Clone-9 cells. Infection with Ad-irisin enhanced the viability and migration of endothelial cells, supporting the pro-angiogenic function of irisin. Besides, Ad-irisin-infected hepatocytes exhibited elevated activities of AMPK/Akt and inhibition of PEPCK signaling, suggesting the role of irisin in gluconeogenesis in the livers. With the development of these irisin-based tools, future studies are warranted to elucidate the cellular function of irisin in different organs, thereby exploring the therapeutic potential of irisin therapy for various human diseases.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
1. Introduction 1
2. Specific Aims 5
3. Materials and Methods 6
4. Results 13
5. Discussion 19
6. References 41
參考文獻 References
1. Gui, M.H., et al., Effect of Metabolic Syndrome Score, Metabolic Syndrome, and Its Individual Components on the Prevalence and Severity of Angiographic Coronary Artery Disease. Chin Med J (Engl), 2017. 130(6): p. 669-677.
2. Panati, K., Y. Suneetha, and V.R. Narala, Irisin/FNDC5--An updated review. Eur Rev Med Pharmacol Sci, 2016. 20(4): p. 689-97.
3. Withrow, D. and D.A. Alter, The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev, 2011. 12(2): p. 131-41.
4. Dunford, E.C. and M.C. Riddell, The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise. Metabolites, 2016. 6(4).
5. Neufer, P.D., et al., Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. Cell Metab, 2015. 22(1): p. 4-11.
6. Hojan, K., et al., Physical exercise for functional capacity, blood immune function, fatigue, and quality of life in high-risk prostate cancer patients during radiotherapy: a prospective, randomized clinical study. Eur J Phys Rehabil Med, 2016. 52(4): p. 489-501.
7. Wrann, C.D., H. van Praag, and B. Christie, FNDC5/Irisin – Their Role in the Nervous System and as a Mediator for Beneficial Effects of Exercise on the Brain. Brain Plasticity, 2015. 1(1): p. 55-61.
8. Ahima, R.S. and H.K. Park, Connecting Myokines and Metabolism. Endocrinol Metab (Seoul), 2015. 30(3): p. 235-45.
9. Brandt, C. and B.K. Pedersen, The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol, 2010. 2010: p. 520258.
10. Oh, K.J., et al., Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci, 2016. 18(1).
11. Perakakis, N., et al., Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol, 2017. advance online publication.
12. Bostrom, P., et al., A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012. 481(7382): p. 463-8.
13. Wrann, C.D., FNDC5/irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain plasticity, 2015. 1(1): p. 55-61.
14. Gouveia, M.C., et al., Association between irisin and major chronic diseases: a review. Eur Rev Med Pharmacol Sci, 2016. 20(19): p. 4072-4077.
15. Provatopoulou, X., et al., Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer, 2015. 15: p. 898.
16. Hirsch, H.J., et al., Irisin and the Metabolic Phenotype of Adults with Prader-Willi Syndrome. PLoS One, 2015. 10(9): p. e0136864.
17. Gannon, N.P., et al., Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer, 2015. 136(4): p. E197-202.
18. Liu, S., et al., Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic beta cells. PLoS One, 2017. 12(4): p. e0175498.
19. Wrann, C.D., et al., Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab, 2013. 18(5): p. 649-59.
20. Fu, J., et al., Irisin Lowers Blood Pressure by Improvement of Endothelial Dysfunction via AMPK‐Akt‐eNOS‐NO Pathway in the Spontaneously Hypertensive Rat. Journal of the American Heart Association, 2016. 5(11): p. e003433.
21. Meng, F., et al., Ginsenoside Rb3 strengthens the hypoglycemic effect through AMPK for inhibition of hepatic gluconeogenesis. Experimental and Therapeutic Medicine, 2017. 13(5): p. 2551-2557.
22. Lee, J.-M., et al., AMPK-dependent Repression of Hepatic Gluconeogenesis via Disruption of CREB•CRTC2 Complex by Orphan Nuclear Receptor Small Heterodimer Partner. The Journal of Biological Chemistry, 2010. 285(42): p. 32182-32191.
23. Lele, R.D., Pro-insulin, C peptide, glucagon, adiponectin, TNF alpha, AMPK: neglected players in type 2 diabetes mellitus. J Assoc Physicians India, 2010. 58: p. 30, 35-40.
24. Lock, M., et al., Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther, 2010. 21(10): p. 1259-71.
25. Yoon, S.Y., et al., Clinical Improvement of Alpha-mannosidosis Cat Following a Single Cisterna Magna Infusion of AAV1. Mol Ther, 2016. 24(1): p. 26-33.
26. Wu, F., et al., Irisin Induces Angiogenesis in Human Umbilical Vein Endothelial Cells In Vitro and in Zebrafish Embryos In Vivo via Activation of the ERK Signaling Pathway. PLoS One, 2015. 10(8): p. e0134662.
27. Zhao, Y.T., et al., Irisin Ameliorates Hypoxia/Reoxygenation-Induced Injury through Modulation of Histone Deacetylase 4. PLoS One, 2016. 11(11): p. e0166182.
28. Albrecht, E., et al., Irisin - a myth rather than an exercise-inducible myokine. Sci Rep, 2015. 5: p. 8889.
29. Pena-Bello, L., et al., Circulating Levels of Irisin in Hypopituitary and Normal Subjects. PLoS One, 2016. 11(7): p. e0160364.
30. Liu, T.Y., et al., FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes, 2016. 65(11): p. 3262-3275.
31. Mo, L., et al., Irisin Is Regulated by CAR in Liver and Is a Mediator of Hepatic Glucose and Lipid Metabolism. Mol Endocrinol, 2016. 30(5): p. 533-42.
32. Zhang, Y., et al., Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 2014. 63(2): p. 514-25.
33. Tibbitts, J., et al., Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. mAbs, 2016. 8(2): p. 229-245.
34. Adair TH, M.J. Angiogenesis. . San Rafael (CA): Morgan & Claypool Life Sciences 2010; Chapter 1 Overview of Angiogenesis. ].
35. Park, M.J., et al., New role of irisin in hepatocytes: The protective effect of hepatic steatosis in vitro. Cell Signal, 2015. 27(9): p. 1831-9.
36. Tang, H., et al., Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine, 2016. 6: p. 139-148.
37. So, W.Y. and P.S. Leung, Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling. Int J Biochem Cell Biol, 2016. 78: p. 237-47.
38. Fu, J., et al., Irisin Lowers Blood Pressure by Improvement of Endothelial Dysfunction via AMPK-Akt-eNOS-NO Pathway in the Spontaneously Hypertensive Rat. J Am Heart Assoc, 2016. 5(11).
39. So, W.Y. and P.S. Leung, Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling. Int J Biochem Cell Biol, 2016. 78: p. 237-247.
40. Kim, D.J., et al., Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells. Nutrition Research and Practice, 2017. 11(3): p. 180-189.
41. Doucet, J., et al., Development and validation of an ELISA at acidic pH for the quantitative determination of IL-13 in human plasma and serum. Dis Markers, 2013. 35(5): p. 465-74.
42. Mock, D.M., G.L. Lankford, and N.I. Mock, Biotin accounts for only half of the total avidin-binding substances in human serum. J Nutr, 1995. 125(4): p. 941-6.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.107.96
論文開放下載的時間是 校外不公開

Your IP address is 18.119.107.96
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code