Responsive image
博碩士論文 etd-0722118-112327 詳細資訊
Title page for etd-0722118-112327
論文名稱
Title
具奈米片狀結構之銅鋅錫硫化物之合成,鑑定及在光電化學產氫之應用
Nanosheet Structured Cu2ZnSnS4: Synthesis, Characterization and Applications in Photoelectrochemical Hydrogen Evolution.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-08-22
關鍵字
Keywords
光電化學水分解、產氫、光陰極、溶熱法、硫化銅、水熱法、銅鋅錫硫
solvothermal, hydrogen produce, Cu2ZnSnS4, photoelectrochemical, CuS, hydrothermal, photocathode
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
銅鋅錫硫具有高吸收係數 (>104 cm-1),直接能隙 (1.4~1.6 電子伏特),且組成元素在地球上含量豐富且無毒,其導帶比氫還原電位負,且能帶範圍適合產氫,近年來被拿來做為光電化學水分解的光陰極來研究。而奈米結構具有大反應面積,較短擴散距離也可彌補銅鋅錫硫電子電洞再復合的現象。
在本研究中分為兩階段合成,以二氧化錫參氟導電玻璃作為基板,第一階段先用水溶液法長上均勻奈米片狀硫化銅,第二階段再用溶熱法轉換成銅鋅錫硫。實驗結果顯示經由化學水浴沉積法可以合成出具六角片狀結構之硫化銅,X光繞射分析顯示為六方晶系的硫化銅,而在轉換銅鋅錫硫部分,實驗結果顯示可以使用甘醇合成出四方晶系的銅鋅錫硫並且維持奈米片狀結構, X光繞射分析儀和拉曼光譜儀測試顯示出除了銅鋅錫硫以外還含有氧化銅、銅鋅錫以及硫化鋅二次相,而可能因為含有二次相的的原因,在沉積硫化鎘後電流並無顯著提升,紫外光可見光光譜儀顯示銅鋅錫硫從800奈米開始吸光,而換算完的能隙值都落在1.3~1.6電子伏特,紫外光電子能譜分析顯示顯示銅鋅錫硫的導帶比氫還原電位來的負,所以可以確定銅鋅錫硫是可以作為光電化學產氫使用,線性伏安法測試可量測到銅鋅錫硫在-0.2伏特對上可逆氫電極時可測得最大光電流為100 微安培每平方公分,在沉積上二氧化鈦以及鎳後暗電流減小光電流則增加到200微安培每平方公分。
Abstract
Copper Zinc Tin Sulfide (CZTS) has a direct band gap with high absorption coefficient, and its component element is earth abundance and non-toxicity. CZTS has a suitable band gap to absorb large portion of solar light, and conduction band position is more negative than the hydrogen reduction potential, so it is usually used as photocathode in photoelectrochemical (PEC) system. Nanostructure has large reaction surface and provides smaller diffusion distance, and therefore this thesis aim at synthesizing nanostructured CZTS.
In this study, we use two step methods to synthesize nanoplate CZTS on FTO substrate. In the first step we use a chemical bath deposition method to synthesis nanosheets CuS, whereas in the second step use a solvothermal method to transform CuS into CZTS. The scanning electron microscopic result shows the hexagonal nanosheets CuS can be synthesized on FTO, and X ray diffraction analysis shows the CuS has Hexagonal covellite structure. In the transformation of CZTS part , nanosheets kestrite CZTS can be synthesized by using ethylene glycol as the solvent in the solvothermal method. X ray diffraction and Raman spectrometer shows the electrode is mainly Kestrite CZTS and with minor secondary phases of CuO , Cu2SnS3 and ZnS. Furthemore, electrochemical analyses suggest ZnS secondary phase might also exist. UV-vis analysis shows CZTS absorb the light from 800 nm ,and band gap is around 1.3~1.6 eV. Ultraviolet photoelectron spectro study shows CZTS conduction band is more negative than hydrogen reduction potential, which means its can use as a photocathode in a PEC system for hydrogen production. Linear swept potential shows the photocurrent is 100 μA/cm2 at -0.2 V (v.s. RHE) for bare CZTS. After the modification with TiO2/Ni/NiOx , the photocurrent increases to 200 μA/cm2 at -0.2 V (v.s. RHE).
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 ix
第一章、緒論 1
第二章、文獻回顧 2
2.1 水分解原理 2
2.1.1 氫能源 2
2.1.2 光電化學水分解原理 2
2.1.3 光電化學水分解之效率檢測 5
2.2 半導體特性 5
2.2.1 能隙 5
2.2.2 能帶彎曲理論 6
2.2.3 光電轉換效應機制 7
2.3 常見光陰極種類及特性 8
2.4 奈米結構特性 8
2.5 銅鋅錫硫 (CZTS)特性及製備方式 10
2.5.1 銅鋅錫硫特性及結構 10
2.5.2 CZTS常見製備方式 11
2.5.2.1 熱注射法 12
2.5.2.2 水熱法/溶熱法 12
2.5.2.3 蒸鍍法 12
2.5.2.4 濺鍍法 12
2.5.2.5 電鍍法 12
2.5.2.6 旋塗法 13
2.5.3 表面修飾 13
第三章、研究方法及步驟 16
3.1 實驗流程圖 16
3.2 實驗分析儀器及實驗藥品 17
3.2.1 實驗藥品 17
3.2.2 實驗儀器及裝置 18
3.2.3 電化學分析裝置及試片分析儀器 20
3.2.3.1 掃描式電子顯微鏡 (Scanning Electron Microscopy , SEM) 22
3.2.3.2 穿透式電子顯微鏡 (Transmission Electron Microscopy , TEM) 22
3.2.3.3 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy , XPS) 22
3.2.3.4 紫外光電子能譜儀 (Ultraviolet Photoelectron Spectroscopy , UPS) 23
3.2.3.5 能量色散X射線光譜儀 (Energy Dispersive Spectrometer , EDS) 23
3.2.3.6 X光繞射分析儀 (X ray Diffraction , XRD) 23
3.2.3.7 紫外光可見光光譜儀 (UV-visble , UV-vis) 23
3.2.3.8 拉曼光譜儀 (Raman) 24
3.3 實驗步驟 24
3.3.1 奈米片狀硫化銅 (CuS) 之沉積方式 24
3.3.2 奈米片狀CuS轉換成CZTS之方式 24
3.3.3 TiO2/Ni/NiOx修飾 25
3.3.4 CdS修飾 25
第四章、結果與討論 26
4.1 奈米片狀CuS沉積 26
4.1.1 奈米片狀CuS不同比例的影響 26
4.1.2 奈米片狀CuS與反應時間的影響 28
4.2 奈米片狀CuS轉換CZTS物性分析 29
4.2.1 奈米片狀CuS轉換CZTS在不同溶劑下的影響 30
4.2.2 奈米片狀CuS轉換CZTS在不同時間下的影響 33
4.2.3 奈米片狀CuS轉換CZTS在不同濃度下的影響 35
4.3 CZTS電化學分析 40
4.3.1 CZTS電化學分析 40
4.3.2 CZTS/CdS 電化學及物性分析 41
4.3.3 CZTS/TiO2/NiOx/Ni 電極電化學分析 46
第五章、結論 50
第七章、參考文獻 52
第八章、附錄 60
附錄圖目錄 60
附錄表格目錄 61
8.1 CZTS改變鋅錫前驅物比例之合成以及電化學 82
參考文獻 References
1. Palo, D. R.; Dagle, R. A.; Holladay, J. D., Methanol Steam Reforming for Hydrogen Production. Chem Rev 2007, 107 (10), 3992-4021.
2. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chem Rev 2010, 110 (11), 6446-73.
3. Vanags, M.; Kleperis, J.; Bajars, G., Water Electrolysis with Inductive Voltage Pulses. 2012.
4. Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S., Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 2015, 8 (10), 2811-2824.
5. Khaselev, O., A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting. Science 1998, 280 (5362), 425-427.
6. Kirner, J. T.; Finke, R. G., Water-oxidation photoanodes using organic light-harvesting materials: a review. J. Mater. Chem. A 2017, 5 (37), 19560-19592.
7. Jaafar, S. N. H.; Minggu, L. J.; Arifin, K.; Kassim, M. B.; Wan, W. R. D., Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview. Renew. Sust. Energ. Rev. 2017, 78, 698-709.
8. Sivula, K.; Le Formal, F.; Gratzel, M., Solar water splitting: progress using hematite (alpha-Fe(2)O(3)) photoelectrodes. ChemSusChem 2011, 4 (4), 432-49.
9. Bignozzi, C. A.; Caramori, S.; Cristino, V.; Argazzi, R.; Meda, L.; Tacca, A., Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev 2013, 42 (6), 2228-46.
10. Park, Y.; McDonald, K. J.; Choi, K. S., Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 2013, 42 (6), 2321-37.
11. Luo, J.; Steier, L.; Son, M. K.; Schreier, M.; Mayer, M. T.; Gratzel, M., Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. Nano Lett. 2016, 16 (3), 1848-57.
12. Wang, J.; Yu, N.; Zhang, Y.; Zhu, Y.; Fu, L.; Zhang, P.; Gao, L.; Wu, Y., Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. J. Alloys Compd. 2016, 688, 923-932.
13. Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N., Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Chem. 2011, 25 (01), 3-16.
14. Jongh, P. E. d.; Vanmaekelbergh, D.; Kelly, J. J., Photoelectrochemistry of Electrodeposited Cu2O. J. Electrochem. Soc. 2000, 147 (2), 486-489
15. Gao, L.; Cui, Y.; Vervuurt, R. H. J.; van Dam, D.; van Veldhoven, R. P. J.; Hofmann, J. P.; Bol, A. A.; Haverkort, J. E. M.; Notten, P. H. L.; Bakkers, E. P. A. M.; Hensen, E. J. M., High-Efficiency InP-Based Photocathode for Hydrogen Production by Interface Energetics Design and Photon Management. Adv. Funct. Mater. 2016, 26 (5), 679-686.
16. Mahajan, S.; Stathatos, E.; Huse, N.; Birajdar, R.; Kalarakis, A.; Sharma, R., Low cost nanostructure kesterite CZTS thin films for solar cells application. Materials Lett. 2018, 210, 92-96.
17. Xiao, F. X.; Miao, J.; Tao, H. B.; Hung, S. F.; Wang, H. Y.; Yang, H. B.; Chen, J.; Chen, R.; Liu, B., One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 2015, 11 (18), 2115-31.
18. Frisk, C.; Ericson, T.; Li, S. Y.; Szaniawski, P.; Olsson, J.; Platzer-Björkman, C., Combining strong interface recombination with bandgap narrowing and short diffusion length in Cu2ZnSnS4 device modeling. Sol. Energy Mater. Sol. Cells 2016, 144, 364-370.
19. Courel, M.; Valencia-Resendiz, E.; Pulgarín-Agudelo, F. A.; Vigil-Galán, O., Determination of minority carrier diffusion length of sprayed-Cu2ZnSnS4 thin films. Solid-State Electron. 2016, 118, 1-3.
20. Mendis, B. G.; Goodman, M. C. J.; Major, J. D.; Taylor, A. A.; Durose, K.; Halliday, D. P., The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS) photovoltaic absorber layer material. J. Appl. Phys. 2012, 112 (12), 124508.
21. Li, B.-J.; Yin, P.-F.; Zhou, Y.-Z.; Gao, Z.-M.; Ling, T.; Du, X.-W., Single crystalline Cu2ZnSnS4 nanosheet arrays for efficient photochemical hydrogen generation. RSC Adv. 2015, 5 (4), 2543-2549.
22. Fontané, X.; Izquierdo-Roca, V.; Saucedo, E.; Schorr, S.; Yukhymchuk, V. O.; Valakh, M. Y.; Pérez-Rodríguez, A.; Morante, J. R., Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. J. Alloys Compd. 2012, 539, 190-194.
23. Zakhvalinskii, V. S.; Nguyen, T. T. H.; Pham; Thi, T.; Dang, N. T.; Piliuk, E. A.; Taran, S. V., Structural, Optical and Electrical Conductivity Properties of Stannite Cu2ZnSnS4. J. Electron. Mater. 2017, 46 (6), 3523-3530.
24. Suryawanshi, M.; Shin, S. W.; Bae, W. R. I.; Gurav, K.; Kang, M. G.; Agawane, G.; Patil, P.; Yun, J. H.; Lee, J. Y.; Moholkar, A.; Kim, J. H., Kesterite CZTS nanocrystals: pH-dependent synthesis. Phys. Status Solidi B 2014, 211 (7), 1531-1534.
25. Scragg, J. J.; Kubart, T.; Wätjen, J. T.; Ericson, T.; Linnarsson, M. K.; Platzer-Björkman, C., Effects of Back Contact Instability on Cu2ZnSnS4 Devices and Processes. Chem. Mater. 2013, 25 (15), 3162-3171.
26. Chen, S.; Walsh, A.; Gong, X. G.; Wei, S. H., Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater. 2013, 25 (11), 1522-39.
27. S, P.; P, T., Thin Film Solar Cells Using Earth-Abundant Materials. 2013.
28. Tajima, S.; Umehara, M.; Hasegawa, M.; Mise, T.; Itoh, T., Cu2ZnSnS4 photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition. Prog. Photovoltaics Res. Appl. 2017, 25 (1), 14-22.
29. Wang, Z.; Gauvin, R.; Demopoulos, G. P., Nanostructural and photo-electrochemical properties of solution spin-coated Cu2ZnSnS4-TiO2 nanorod forest films with an improved photovoltaic performance. Nanoscale 2017, 9 (22), 7650-7665.
30. Tanaka, K.; Fukui, Y.; Moritake, N.; Uchiki, H., Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 2011, 95 (3), 838-842.
31. Fernandes, P. A.; Salome, P. M. P.; da Cunha, A. F., Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. Journal of Alloys and Compounds 2011, 509 (28), 7600-7606.
32. Park, S. N.; Sung, S. J.; Sim, J. H.; Yang, K. J.; Hwang, D. K.; Kim, J.; Kim, G. Y.; Jo, W.; Kim, D. H.; Kang, J. K., Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells. Nanoscale 2015, 7 (25), 11182-9.
33. Rana, T. R.; Shinde, N. M.; Kim, J., Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films. Mater. Lett. 2016, 162, 40-43.
34. Guan, H.; Shen, H.; Raza, A., Solvothermal Synthesis of p-type Cu2ZnSnS4-Based Nanocrystals and Photocatalytic Properties for Degradation of Methylene Blue. Catal. Lett. 2017, 147 (7), 1844-1850.
35. Gong, Z.; Han, Q.; Li, J.; Hou, L.; Bukhtiar, A.; Yang, S.; Zou, B., A solvothermal route to synthesize kesterite Cu2ZnSnS4 nanocrystals for solution-processed solar cells. J. Alloys Compd. 2016, 663, 617-623.
36. Chalapathi, U.; Uthanna, S.; Raja, V. S., Structural, microstructural and optical properties of Cu2ZnSnS4 thin films prepared by thermal evaporation: effect of substrate temperature and annealing. Bulletin of Materials Science 2017, 40 (5), 887-895.
37. Zhuk, S.; Kushwaha, A.; Wong, T. K. S.; Masudy-Panah, S.; Smirnov, A.; Dalapati, G. K., Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance. Sol. Energy Mater. Sol. Cells 2017, 171, 239-252.
38. Dhakal, T. P.; Peng, C. Y.; Reid Tobias, R.; Dasharathy, R.; Westgate, C. R., Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 2014, 100, 23-30.
39. Katagiri, H.; Jimbo, K.; Yamada, S.; Kamimura, T.; Maw, W. S.; Fukano, T.; Ito, T.; Motohiro, T., Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Appl. Phys. Express 2008, 1, 041201.
40. Olgar, M. A.; Klaer, J.; Mainz, R.; Levcenco, S.; Just, J.; Bacaksiz, E.; Unold, T., Effect of precursor stacking order and sulfurization temperature on compositional homogeneity of CZTS thin films. Thin Solid Films 2016, 615, 402-408.
41. Rovelli, L.; Tilley, S. D.; Sivula, K., Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. ACS Appl Mater. Inter. 2013, 5 (16), 8018-24.
42. E. Rakhshani, A., One-Step Electrodeposition of CuZnSn Metal Alloy Precursor Film Followed by the Synthesis of Cu2ZnSnS4 and Cu2ZnSnSe4 Light Absorber Films and Heterojunction Devices. Int. J. Electrochem. Sci 2017, 7786-7794.
43. Wang, J.; Zhang, P.; Song, X.; Gao, L., Cu2ZnSnS4 thin films: spin coating synthesis and photoelectrochemistry. RSC Adv. 2014, 4 (41), 21318-21324.
44. Yeh, M. Y.; Lei, P. H.; Lin, S. H.; Yang, C. D., Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology. Materials Lett. 2016, 9 (7).
45. Youn, N. K.; Agawane, G. L.; Nam, D.; Gwak, J.; Shin, S. W.; Kim, J. H.; Yun, J. H.; Ahn, S.; Cho, A.; Eo, Y. J.; Ahn, S. K.; Cheong, H.; Kim, D. H.; Shin, K.-S.; Yoon, K. H., Cu2ZnSnS4 solar cells with a single spin-coated absorber layer prepared via a simple sol-gel route. Int. J. Energy Res. 2016, 40 (5), 662-669.
46. Liu, F.; Lai, Y.; Liu, J.; Wang, B.; Kuang, S.; Zhang, Z.; Li, J.; Liu, Y., Characterization of chemical bath deposited CdS thin films at different deposition temperature. J. Alloys Compd. 2010, 493 (1-2), 305-308.
47. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z.-X.; Tang, J., Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ. Sci. 2015, 8 (3), 731-759.
48. Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W., Volcano plots in hydrogen electrocatalysis - uses and abuses. Beilstein J Nanotechnol 2014, 5, 846-54.
49. Yang, W.; Oh, Y.; Kim, J.; Jeong, M. J.; Park, J. H.; Moon, J., Molecular Chemistry-Controlled Hybrid Ink-Derived Efficient Cu2ZnSnS4 Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Letters 2016, 1 (6), 1127-1136.
50. Guan, Z.; Luo, W.; Xu, Y.; Tao, Q.; Wen, X.; Zou, Z., Aging Precursor Solution in High Humidity Remarkably Promoted Grain Growth in Cu(2)ZnSnS(4) Films. ACS Appl Mater. Inter. 2016, 8 (8), 5432-8.
51. Guan, Z.; Luo, W.; Zou, Z., Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode. CrystEngComm 2014, 16 (14), 2929.
52. Colina-Ruiz, R. A.; Mustre de León, J.; Lezama-Pacheco, J. S.; Caballero-Briones, F.; Acosta-Alejandro, M.; Espinosa-Faller, F. J., Local atomic structure and analysis of secondary phases in non-stoichiometric Cu2ZnSnS4 using X-ray absorption fine structure spectroscopy. J. Alloys Compd. 2017, 714, 381-389.
53. Yao, Z.; Zhu, X.; Wu, C.; Zhang, X.; Xie, Y., Fabrication of Micrometer-Scaled Hierarchical Tubular Structures of CuS Assembled by Nanoflake-built Microspheres Using an In Situ Formed Cu(I) Complex as a Self-Sacrificed Template. Cryst. Growth Des. 2007, 7 (7), 1256-1261.
54. Saranya, M.; Santhosh, C.; Ramachandran, R.; Nirmala Grace, A., Growth of CuS Nanostructures by Hydrothermal Route and Its Optical Properties. J. Nanotechno. 2014, 2014, 1-8.
55. Ye, M.; Wen, X.; Zhang, N.; Guo, W.; Liu, X.; Lin, C., In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. J. Mater. Chem. A 2015, 3 (18), 9595-9600.
56. Puspitasari, I.; Gujar, T. P.; Jung, K.-D.; Joo, O.-S., Simple chemical preparation of CuS nanowhiskers. Mater. Sci. Eng., B 2007, 140 (3), 199-202.
57. Nemade, K. R.; Waghuley, S. A., Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Res. Int. 2015, 39, 781-785.
58. Kattan, N.; Hou, B.; Fermín, D. J.; Cherns, D., Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Applied Materials Today 2015, 1 (1), 52-59.
59. Guc, M.; Levcenko, S.; Bodnar, I. V.; Izquierdo-Roca, V.; Fontane, X.; Volkova, L. V.; Arushanov, E.; Perez-Rodriguez, A., Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals. Sci Rep. 2016, 6, 19414.
60. Fernandes, P. A.; Salomé, P. M. P.; da Cunha, A. F., Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 2009, 517 (7), 2519-2523.
61. Fernandes, P. A.; Salomé, P. M. P.; Cunha, A. F. d., Growth and Raman scattering characterization of Cu2ZnSnS4 thin films.
62. Hagemam, H.; Bill, H.; Sadowski, W.; Walkerb, E.; Francois, M., Raman spectra of single crtstal CuO. Solid State Commun. 1990, 73.
63. Serrano, J.; Cantarero, A.; Cardona, M.; Garro, N.; Lauck, R.; Tallman, R. E.; Ritter, T. M.; Weinstein, B. A., Raman scattering inβ-ZnS. Phys. Rev. B 2004, 69 (1).
64. Pandiyan, R.; Oulad Elhmaidi, Z.; Sekkat, Z.; Abd-lefdil, M.; El Khakani, M. A., Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications. Appl. Surf. Sci. 2017, 396, 1562-1570.
65. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd Edition. John Wiley & Sons: 2000.
66. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S., XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17 (9), 2664-2669.
67. Li, H.; Qi, Y.; Li, Z.; Ji, Z.; Wu, X., ZnO photoanodes coated with Ni-based nanostructured electrocatalyst for water oxidation. Journal of Alloys and Compounds 2016, 661, 201-205.
68. Mansour, A. N., Characterization of NiO by XPS. Surface Science Spectra 1994, 3 (3), 231-238.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code