Responsive image
博碩士論文 etd-0722118-143955 詳細資訊
Title page for etd-0722118-143955
論文名稱
Title
應用於微型水力發電之磁通切換永磁發電機設計與分析
Design and Analysis of a Flux-Switching Permanent Magnet Generator for Micro-Scale Hydropower System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-09
繳交日期
Date of Submission
2018-08-22
關鍵字
Keywords
反電勢、頓轉扭矩、等效磁路分析法、偏移式轉子、磁通切換永磁發電機、ANSYS Maxwell
cogging torque, lux switching permanent magnet generator, ANSYS Maxwell, back-EMF, equivalent magnetic circuit analysis, skewing rotor
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
本文乃創新提出一種透過磁通切換永磁方式於微型水力發電機之設計 (Flux switching permanent magnet generator, FSPMG),其主要透過三段式偏移式轉子的結構消除頓轉扭矩,藉由連接孔位設計,使轉子擁有多組的偏移角度,並藉由磁通切換結構內線圈與磁鐵圍繞定子同側以及磁鐵與矽鋼片的排列修正方式,配合電機結構之基礎設計理論與模擬分析,以改善過去傳統發電機之缺點,進而促使面對不同轉速範圍能更有效的啟動。整體研究中首先乃利用嵌入式永磁發電機 (Insert-mounted permanent magnet generator, IPMG) 進行量測與模擬的相互驗證,確立數學模型與實際結構的合適性。當量測與模擬分析達到一定常數的修正後,藉由等效磁路分析 (Equivalent magnetic circuit analysis, EMCA) 奠定出的整體FSPMG磁通量,進而建構出外徑 ~12 cm、積厚~10 cm、12槽10極、額定轉速 ~1,200 rpm與 ~1 kW發電功率之FSPMG數學型態,透過ANSYS Maxwell數值電磁有限元素分析 (Finite element analysis, FEA) 之磁通密度、反電勢、諧波失真率、銅鐵損、頓轉扭矩以及不同極數下之輸出功率結果,進行相關幾何尺寸優化,最後以最佳發電機參數12槽11極輸出製作實體磁通切換發電機並進行特性量測。實驗結果顯示,從IPMG量測與模擬結果驗證發現數學模型與實際結構在高轉速下可達到2.6%的合適性,因此利用高可信度與優化參數之FSPMG數學模型分析結果顯示,轉速在 ~1,200 rpm與外接負載6.9 Ω狀況下,FSPMG可提供1.1 kW之發電量。最後,經數學模型分析優化結果建構出發電機實體,進行正對式轉子之開路反電勢量測以及6.9 Ω閉路電阻負載量測,其結果分別為75.6 V及991 W,與模擬結果相比誤差為11.5%以及7.1%。頓轉扭矩進行正對式、等差角度偏移、均分角度偏移三種轉子型式量測,結果顯示頓轉扭矩分別為2.13 Nm、0.85 Nm以及0.55 Nm,兩種偏移轉子形式扭矩分別下降60%以及74.2%。證實偏移轉子能有效降低頓轉扭矩。本研究將可藉由較低成本及高效率之數學模擬分析法,提供新型磁通切換永磁發電機完整的設計流程以及優化程序,並藉由新型偏移轉子設計,成功降低發電機的頓轉扭矩。
Abstract
In this thesis, a flux switching permanent magnet generator (FSPMG) with three-stages skewing rotor applying in micro-scale hydropower generator was proposed. This innovation structure was arranged with a new type rotor called rotor skewing, which can reduce the cogging torque. Based on the inner holes design at rotor, there has six combinations of skewing angle in one rotor. The coil and magnets of FSPMG are located at the same side of outside stator. This arrangement was able to increase the speed adaptability of generator, which resolve the disadvantages of conventional generator only suitable for high speed. In research process, an Insert-mounted permanent magnet generator (IPMG) was used to compare the measurement and simulation results and established the appropriateness between the mathematical models and the actual structures. Then the flux density of magnet and the specification of FSPMG are derived by the method of equivalent magnetic circuit analysis. The dimension is limited at the diameter 12 cm of outer stator and the length 10 cm of stack length. The combination of stator slots and rotor poles are chosen for 12 and 10. The rated speed and the rated power of generator are 1200 rpm and 1 kW. A two-dimensional electromagnetic software ANSYS Maxwell was used to simulate the output performance of FSPMG structure such as flux density, back-EMF, harmonic distortion, core loss, strand loss, cogging torque and the output power in different rotor poles. The simulation results show that the structure of rotor tooth was optimized. At last, one set of FSPMG structure with 12 stator slots and 11 rotor poles are chosen for manufacturing the prototype. The experiment results show that the error of IPMG between the measurement and simulation can reach 2.6%, which confirms the accuracy of the numerical analysis. The simulation results show that the FSPMG can produce 1.1 kW with 6.9 Ω at 1200 rpm. Final, the prototype of FSPMG was measured with open-load test and loaded test with 6.9 Ω, the results are 75.6 V and 991 W. The error between simulation and measurement is 11.5% and 7.1%. The cogging torque measurement was measured in three skewing angle rotors: no skewing, equal difference skewing angle and equal ratio skewing angle. The results show that the cogging torque were 2.13 Nm, 0.85 Nm and 0.55 Nm, which decreased 60% and 74.2% respectively. It is confirmed that the skewing rotor can effectively reduce the cogging torque. This study provides a design and optimization process for FSPMG with a lower cost and high efficiency mathematical simulation analysis, and the skewing rotor effectively reduce the cogging torque and the torque ripple.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究目的 3
1.4 本文架構 4
第二章 文獻回顧與理論基礎 5
2.1 磁通切換永磁電機發展趨勢 5
2.1.1 無刷永磁電機的發展 5
2.1.2 轉子永磁型電機 5
2.1.3 定子永磁型電機 6
2.1.4 磁通切換永磁電機 9
2.1.5 磁通切換永磁電機材料選擇 11
第三章 研究方法與步驟 14
3.1 研究流程 15
3.2 嵌入式永磁發電機模擬與驗證 16
3.2.1 嵌入式永磁發電機 16
3.2.2 發電機動力測試系統 17
3.2.3 嵌入式永磁發電機頓轉轉矩模擬與量測 17
3.2.4 嵌入式永磁發電機頓轉轉矩模擬與量測 18
3.3 磁通切換永磁發電機設計與分析 19
3.3.1 磁通切換永磁發電機規格與尺寸訂定 20
3.3.2 磁通切換永磁發電機氣隙磁通密度分析 22
3.3.3 磁通切換永磁發電機繞組與電流密度計算 28
3.3.4 磁通切換永磁發電機繞線設計 28
3.3.5 磁通切換永磁發電機模擬分析 29
3.4 磁通切換永磁發電機雛型製作與量測 32
第四章 結果與討論 34
4.1 嵌入式永磁發電機模擬與量測結果 34
4.2 磁通切換永磁發電機尺寸驗證與氣隙磁通密度計算 38
4.3 磁通切換永磁發電機繞組匝數與電流密度計算 40
4.4 磁通切換永磁發電機繞組設計 41
4.5 磁通切換永磁發電機模擬分析 44
4.6 磁通切換永磁發電機製作與量測 58
4.6.1 定子矽鋼片切割加工 58
4.6.2 轉子矽鋼片切割加工與軸承製作 63
4.6.3 定子槽內繞線加工 68
4.6.4 磁通切換永磁發電機啟動扭矩量測 70
4.6.5 磁通切換永磁發電機電性量測 71
4.6.6 磁通切換永磁發電機電性偏移轉子量測 74

第五章 結論與未來展望 76
5.1 結論 76
5.2 未來展望 78
參考文獻 79
參考文獻 References
[1] 張浚溢,「表面型與內藏型永磁同步機特性比較」,逢甲大學電機工程學系碩士班碩士論文,2002年。
[2] D.P.M.Cahill, B Adkins, “The permanent magnet synchronous motor,” Proceedings of IEE on Electrical Power Applocations, pp. 483-491, 1962.
[3] E. Richter, T.J.E. Miller, T.W. Neumann, “The ferrite permanent magnet AC motor-A technical and economical assessment,” IEEE Transactions on Industry Applications, pp. 644-650, 1985.
[4] T.M. Jahns, “Motion control with pemtanant-magnetAC machines,” Proceedings of IEEE, pp. 1241-1252, 1994.
[5] Y.S. Chen, “Motor topologies and control strategies for permanent magnet brushlessAC drives,” Deparhent ofEleetronie and Electrical Engineering, University of Sheffield, 1999.
[6] J.R. Hendershot, T.J.E. Miller, “Design of Brushless Permanent-Magnet Motors,” Oxford:Magna Physics Publishing and Clarendon Press, 1994.
[7] T.M. Jahns, E.L. Owen, “AC adjustable-speed drives at the millennium: How did we get here,” IEEE Transactions on Power Electronics, pp. 17-25, 2001.
[8] T.M. Jahns, W.L. Soong, “Pulsating torque minimization techniques for permanent magnet ac motor drives a review,” IEEE Transactions on Industrial Electronics, pp. 321-330, 1996.
[9] 唐任遠,「現代永磁電機理論與設計」,機械工業出版社,1997。
[10] 李鍾明,劉衛國,劉景林,「稀土永磁電機」,國防工業出版社,1999。
[11] N. Bianchi, S. Bolognani, “Design techniques for reducing the cogging torque in surface-mounted PM motors,” IEEE Transactions On Industry Applications, pp. 1259-1265, 2002.
[12] R.S. Colby, D.W. Novotny, “Efficient operation of surface-mounted PM synchrous motors,” IEEE Transactions on Industry Applications, pp. 1048-1054, 1987.
[13] S.E. Rauch, L.J. Johnson, “Design Principles of Flux-Switch Alternators,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, Vol. 74, Issue 3, 1955.
[14] Y. Liao, F. Liang and T.A. Lipo, “A novel permanent magnet machine with doubly salient structure,” IEEE Transactions on Industry Applications, pp. 1069-1078, 1992.
[15] R.P. Deodhar, S. Anderson and I. Bodea, “The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine,” Proceedings of lEEE Industry Applications Conference, pp. 786-793, 1996.
[16] E. Hoang, A.H. Ben-Ahmed and J. Lucidarme, “Switching flux permanent magnet polyphased synchronous machines,” The 7th European Conference on Power Electronic and Applications, pp. 903-908, 1997.
[17] M. Cheng, “Design, Analysis and Control of Doubly Salient Permanent Magnet Motor Drives,” Depafonent ofElectrical and Electronic, Hong Kong University, 2001.
[18] M. Cheng, K.T. Chau, C.C. Chan, “Control and operation of a new 8/6-pole doubly salient permanent magnet motor drive,” IEEE Transactions of Industry Applications, pp. 1363-1371, 2003.
[19] C. Wang, S.A. Nasar and I. Boidea, “Three-phase flux reversal machine (FRM),” Proceedings of IEE on Electrical Power Applications, pp. 139-146, 1999.
[20] I. Boldea, J. Zhang and S.A. Nasar, “Theoretical characterization of flux reversal machine in low-speed servo drives the pole-PM configuration,” IEEE Transactions on Industry Applications, pp. 1549-1558, 2002.
[21] Z.Q. Zhu, Y. Pang and D. Howe, “Analysis of electromagnetic performance of flux·switching permanent magnet machines by non-linear adaptive lumped parameter magnetic circuit model,” IEEE Transactions on Magnetics, pp. 4177-4287, 2005.
[22] Lina Yi, Meng Zhao, “Doubly Salient Permanent Magnet Motor Development Review,” 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, 2013.
[23] Tae Heoung Kim, Ju Lee, “A Study of the Design for the Flux Reversal Machine,” IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 2053-2055, 2004.
[24] E. Hoang, M. Gabsi and M. Lecrivain, “Influence of magnetic losses on maximum power limits of synchronous permanent magnet drives in flux-weakening mode,” IEEE Industry Applications Society Annual Meeting, pp. 299-303, 2009.
[25] Y. Amara, E. Hoang and M. Gabsi, “Design and comparison of different flux-switch synchronous machines for an aircraft oil breather application,” The 2nd IEEE International Conderence in Signals, Systems Decision and Information Technoloy, pp. 26-32, 2003.
[26] Njål Rotevatn, “Design and testing of Flux Switched Permanent Magnet (FSPM) Machines,” Norwegian University of Science and Technology, 2009.
[27] Wei Hua, Ming Cheng, Z. Q. Zhu and D. Howe, “Design of Flux-Switching Permanent Magnet Machine Considering the Limitation of Inverter and Flux-Weakening Capability,” Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, 2006.
[28] Z.Q. Zhu, J.T. Chen, “Advanced Flux-Switching Permanent Magnet Brushless Machines,” IEEE Transactions on Magnetics, Vol. 46, No. 6, pp. 1447-1453, 2010.
[29] Richard L. Owen, Z. Q. Zhu, Arwyn S. Thomas, Geraint W. Jewell and David Howe, “Alternate Poles Wound Flux-Switching Permanent-Magnet Brushless AC Machines,” IEEE Transactions on Industry Applications, Vol. 46, No. 2, pp.790-797, 2010.
[30] A. S. Thomas, Z. Q. Zhu, and G.W. Jewell, “Comparison of flux switching and sruface mounted permanent magent generators for high speed applications,” IET Electrical Systems in Transportation, Vol. 1, Issue 3, 2011.
[31] Wei Hual, Ming Cheng, Z. Q. Zhu, and D. Howe, “Analysis and Optimization of Back-EMF Waveform of a Novel Flux-Switching Pernanent Magnet Motor,” 2007 IEEE International Electric Machines & Drives Conference, 2007.
[32] Z.Q. Zhu, Y. Pang, J. T. Chen, Z.P. Xia and D. Howe, “Influence of Design Parameters on Output Torque of Flux-Switching Permanent Magnet Machines,” 2008 IEEE Vehicle Power and Propulsion Conference, 2008.
[33] Hengliang Zhang, Wei Hua, and Gan Zhang, “Analysis of Back-EMF Waveform of a Novel Outer-Rotor-Permanent-Magnet Flux-Switching Machine,” IEEE Transactions on Magnetics, Vol. 53, No. 6, 2017.
[34] Agathe Dupas, Sami Hlioui, Emmanuel Hoang, Mohamed Gabsi, and Michel Lecrivain, “Investigation of a New Topology of Hybrid-Excited Flux-Switching Machine With Static Global Winding: Experiments and Modeling,” IEEE Transactions on Industry Applications, Vol. 52, No. 2, 2016.
[35] Yingjie Li, Silong Li, Yida Yang, and Bulent Sarlioglu, “Analysis of Flux Switching Permanent Magnet Machine Design for High-Speed Applications,” IEEE Energy Conversion Congress and Exposition (ECCE), 2014.
[36] Mahyuzie Jenal, Erwan Sulaiman, Mohd Fairoz Omar, Gadafi M Romalan and Hassan Ali Soomro, “Development of a Novel Permanent Magnet Flux Switching Machine Prototype for Light Weight Electric Vehicles,” IEEE Student Conference on Research and Development (SCOReD), 2015.
[37] Tsarafidy Raminosoa, Ayman M. El-Refaie, Di Pan, Kum-Kang Huh, James P. Alexander, Kevin Grace, Stefan Grubic, Patel B. Reddy and Xiaochun Shen, “Reduced Rare-Earth Flux-Switching Machines for Traction Applications,” IEEE Transactions on Industry Applications, Vol. 51, No. 4, 2015.
[38] Johann Krenn and Helmut Weiss, “Three Phase Flux Switching Machine with Hybrid Excitation – Design and Implementation,” 17th International Ural Conference on AC Electric Drives (ACED), 2018.
[39] 謝明甫、余守龍,「高效率永磁無刷馬達之設計與分析」,國立成功大學系統及船舶機電工程學系碩士論文,2009年。
[40] 陳洪龍,「應用於電動車之永磁磁通切換馬達之設計與分析」,逢甲大學電機工程所碩士論文,2014。
[41] Chang-Chou Hwang, Chia-Ming Chang, San-Shan Hung, and Cheng-Tsung Liu “Design and Analysis of a Novel Hybrid Excited Linear Flux Switching Permanent Magnet Motor,” IEEE Transactions on Magnetics, 2014.
[42] Chang-Chou Hwang, Chia-Ming Chang, San-Shan Hung, and Cheng-Tsung Liu “Design of High Performance Flux Switching PM Machines with Concentrated Windings,” IEEE Transactions on Magnetics, 2014.
[43] Ming-Shi Huang, Po-Ching Chen, and Yuh-Shyuan Huang, “Reduce the cogging torque of Axial Flux Permanent Magnet synchronous motor for light electric vehicle applications,” IEEE International Conference on Industrial Technology (ICIT), 2016.
[44] Sheng-Ming Yang, Jun-Ying Jiang, and Hong Quan Nguyen, “Design of a 12-slot 7-pole wound-field flux switching motor for traction applications,” IEEE International Conference on Industrial Technology (ICIT), 2016.
[45] Alireza Zohoori, Abolfazl Vahedi, Mohammad Ali Noroozi and Santolo Meo, “A new outer-rotor flux switching permanent magnet generator for wind farm applications,” Wind Energy in Wiley Online Library, pp. 3-17, 2017.
[46] Lei Huang, Minqiang Hu, Jing Liu, Haitao Yu, Cengcang Zeng, and Zhongxian Chen, “Electromagnetic Design of a 10-kW-Class Flux-Switching Linear Superconducting Hybrid Excitation Generator for Wave Energy Conversion,” IEEE Transactions on applied superconductitivity, Vol. 27, No. 4, 2017.
[47] 卯尚勳,「直驅式跑步機用直流無刷馬達之設計」,國立成功大學機械工程學系碩士論文,2002。
[48] 陳達裕,「降低永磁式發電機頓轉扭矩之研究」,國立交通大學機械工程學系碩士論文,2011年。
[49] Weizhong Fei, Patrick Chi Kwong Luk and Jianxin Shen, “Torque Analysis of Permanent- Magent Flux Switching Machines With Rotor Step Skewing,” IEEE Transactions on magnetics, Vol. 48, pp.2664-2673, 2012. .
[50] W. Fei, P. C. K. Luk, B. Xia, Y. Wang and J. X. Shen, “Permanent Magnet Flux Switching Integrated-Starter-Generator with Different Rotor Configurations for Cogging Torque and Torque Ripple Mitigations,” IEEE Energy Conversion Congress and Exposition, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.174.76
論文開放下載的時間是 校外不公開

Your IP address is 3.15.174.76
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code