Responsive image
博碩士論文 etd-0722118-154744 詳細資訊
Title page for etd-0722118-154744
論文名稱
Title
全像莫列波光柵在分佈反饋式雷射的應用
Holographic moiré phase-shifted grating for distributed feedback laser applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-15
繳交日期
Date of Submission
2018-08-22
關鍵字
Keywords
分佈反饋式雷射、莫列波相位移光柵、雷射干涉微影術
laser interference lithography, distributed feedback laser, moiré phase-shifted gratings
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
高速分佈反饋式雷射在製程上良率是造成量產上重要的問題之一,在影響良率的重要因素不外乎發光波長的穩定度以及旁模抑制比,波長的不穩定也會影響雷射高頻的特性,為了使雷射穩定單波長輸出,通常需使用四分之一相位移的光柵結構,需透過電子束直寫的方式來達成,其成本昂貴且耗時。然而,若要使用較便宜的方式實現相位移光柵,則需使用莫列波光柵結構。此光柵結構最早應用於光纖光柵,而後由飛利浦公司首先使用莫列波光柵於單波長雷射製作,但後來的相關發展與文獻相當少。有鑑於近年來高速網路的發展,高速直調分佈反饋式雷射的需求上升,本論文透過實驗室特有光場均勻之全像干涉微影系統來製作莫列波光柵,成功實現高均勻度的振幅莫列波光柵結構於兩吋的晶圓上,此外,我們亦設計雙層光柵結構,利用彼此錯位產生相位干涉,形成相位莫列波光柵結構。最後我們將這兩種光柵結構應用於分佈反饋式雷射的製作,成功實現旁模抑制比達40 dB以上的特性,輸出功率達10 mW以上,臨界電流在9~12 mA,高頻特性方面其3-dB bandwidth可達27.5 Gb/s,在分佈反饋式雷射中擁有良好的波長穩定度及高頻特性。
Abstract
The major issue in the production of high speed distributed feedback (DFB) laser is its low device yield, which comes from the lasing wavelength instability and low side-mode suppression ratio (SMSR). Unstable lasing wavelength also leads to degraded device performance in high speed operation. It usually requires a quarter-wavelength phase-shifted grating structure to achieve stable single-wavelength lasing condition in DFB lasers. However, such grating structure can only be realized by expensive and time-consuming e-beam lithography. Alternatively, moiré phase-shifted gratings can be realized by low-cost laser interference lithography. It was originally applied for fiber grating applications. In this thesis we successfully realize highly uniform amplitude-moiré phase-shifted gratings over a large sample area by using our custom-made laser interference lithography system. In addition, we also demonstrate phase-moiré gratings by stacking two layers of grating with different periodicities to introduce phase misalignment between two grating layers. Finally, we apply both types of moiré gratings in DFB laser fabrication. The resulting devices achieve > 40 dB SMSR, > 10-mW output power, a threshold current of 9~12 mA, and a 3-dB bandwidth of up to 27.5Gb/s.
目次 Table of Contents
中文審定書i
英文審定書ii
致謝iii
中文摘要iv
Abstract v
內容目錄vi
圖目錄ix
表目錄xiv
第一章 緒論 1
1.1 研究背景 1
1.2研究動機 3
1.3文獻回顧 5
1.3.1 振幅莫列波光柵波導結構5
1.3.2 漸變光柵波導結構8
1.3.3 平面相位莫列波導光柵結構10
1.3.4 分佈反饋式雷射12
第二章 振幅莫列波光柵與相位莫列波光柵模擬14
2.1 振幅莫列波光柵理論14
2.1.1 雷射振幅莫列波光柵臨界增益發光模態模擬 15
2.2 相位莫列波光柵結構理論21
2.2.1 相位莫列波光柵結構侷限因子與頻譜響應模擬22
2.3 莫列波光柵曝光誤差模擬27
2.4 布拉格光柵結構與原理 29
第三章 全像術系統及黃光微影製程 32
3.1 光場強度平坦化全像系統 32
3.2 勞氏鏡系統35
3.3 光學繞射量測系統 36
3.4黃光微影製程及流程步驟38
3.4.1 振幅莫列波光柵製作41
第四章 蝕刻製程與雷射製程介紹45
4.1蝕刻技術介紹 45
4.2 濕式蝕刻製程 47
4.3 乾式蝕刻製程 48
4.3.1 乾蝕刻設備歷史及感應耦合式蝕刻機50
4.4 濕式蝕刻應用於莫列波光柵結構54
4.5 乾式蝕刻應用於莫列波光柵結構58
4.6 雷射製程介紹65
第五章 DFB雷射封裝及量測結果69
5.1 雷射封裝及儀器介紹69
5.1.1 覆晶黏著機70
5.1.2 雷射封裝方式71
5.2 雷射量測系統73
5.3 相位莫列波光柵結構雷射量測結果74
5.3.1 相位莫列波光柵雷射數據分析80
5.4 振幅莫列波光柵結構雷射量測結果83
5.4.1 振幅莫列波光柵雷射數據分析86
5.5 雷射高頻特性量測89
5.5.1 高頻眼圖分析92
5.5.2 相位莫列波光柵雷射高頻特性量測結果94
第六章 結論與未來工作96
6.1 結論96
6.2 未來工作97
參考文獻98
參考文獻 References
[1] D. Reid, C. Ragdale, I. Bennion, J. Buus, and W. Stewart, "Phase-shifted Moire grating fibre resonators," Electronics Letters, vol. 26, no. 1, pp. 10-12, 1990.
[2] M. Ibsen, M. K. Durkin, and R. I. Laming, "Chirped moiré fiber gratings operating on two-wavelength channels for use as dual-channel dispersion compensators," IEEE Photonics Technology Letters, vol. 10, no. 1, pp. 84-86, 1998.
[3] L. Everall et al., "Fabrication of multipassband moiré resonators in fibers by the dual-phase-mask exposure method," Optics letters, vol. 22, no. 19, pp. 1473-1475, 1997.
[4] A. Talneau, J. Charil, A. Ougazzaden, and J. Bouley, "High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient," Electronics letters, vol. 28, no. 15, pp. 1395-1396, 1992.
[5] F. Girardin, G.-H. Duan, and A. Talneau, "Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers," IEEE J. Quan. Electron., vol. 31, no. 5, pp. 834-841, vol. 31, no. 5, pp. 834-841, 1995.
[6] Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, and T.-C. Kao, "Employing refractive beam shaping in a Lloyd's interference lithography system for uniform periodic nanostructure formation," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 35, no. 3, p. 030601, 2017.
[7] Y. Shi, S. Li, R. Guo, R. Liu, Y. Zhou, and X. Chen, "A novel concavely apodized DFB semiconductor laser using common holographic exposure," Optics express, vol. 21, no. 13, pp. 16022-16028, 2013.
[8] S. Liu et al., "Planar waveguide Moiré grating," Optics express, vol. 25, no. 21, pp. 24960-24973, 2017.
[9] G. Heise, R. Matz, and U. Wolff, "Phase-shifted holographic gratings for distributed feedback lasers," in Integrated Optical Circuit Engineering III, 1986, vol. 651, pp. 87-94: International Society for Optics and Photonics.
[10] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012.
[11] M. Okai, N. Chinone, H. Taira, and T. Harada, "Corrugation-pitch-modulated phase-shifted DFB laser," IEEE Photonics Technology Letters, vol. 1, no. 8, pp. 200-201, 1989.
[12] T. Fessant, "Gaussian‐like tapered grating quarter wave‐shifted DFB semiconductor lasers for high‐power single‐ mode operation," Appl. Phys. B, vol. 67, no. 6, pp. 769772, 1998.
[13] D. Wiesmann, C. David, R. Germann, D. Emi, and G. Bona, "Apodized surface corrugated gratings with varying duty cycles," IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 639-641, 2000.
[14] https://goo.gl/m1Qbzh.
[15] H. Kogelnik and C. Shank, "Stimulated emission in a periodic structure," Applied Physics Letters, vol. 18, no. 4, pp. 152-154, 1971.
[16] L. Vivien and L. Pavesi, "Handbook of silicon Photonics,," CRC Press, 2013.
[17] L. Chrostowski and K. Iniewski, "High-Speed Photonics Interconnects," CRC Press, 2013.
[18] 張漢榮, "利用勞氏鏡干涉架構搭配光場強度均勻器製作晶圓級奈米圖案," 中山大學光電工程學系研究所學位碩士論文, 2016.
[19] 高子杰, "連續漸變週期光柵的實現與應用,," 中山大學光電工程學系研究所學位碩士論文, 2017.
[20] http://www.samco-plasma.cn/cleaning/uv-ozone-cleaners/.
[21] https://www.mrnanotec.com.tw/product/uv-curing-machine.
[22] https://goo.gl/m96SSY.
[23] https://goo.gl/q1PSG2.
[24] https://goo.gl/bwZCKe.
[25] 施秉豪, "次波長光柵元件在矽光子的應用," 中山大學光電工程學系研究所學位碩士論文, 2016
[26] https://reurl.cc/mnGnG.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code