Responsive image
博碩士論文 etd-0722118-162616 詳細資訊
Title page for etd-0722118-162616
論文名稱
Title
使用胃癌基因鼠模型探討P53缺失上調Twist1影響腫瘤遠端轉移的分子機制
Investigation of the molecular mechanisms in regulation of tumor distant metastasis by P53 loss-induced Twist1 overexpression using the murine model of gastric carcinoma.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-30
繳交日期
Date of Submission
2018-08-22
關鍵字
Keywords
Twist1、遠端轉移、P53、LKB1、PTEN、胃癌、動物模式
P53, Twist1, PTEN, metastatic gastric carcinoma, mouse model, Gastric cancer, LKB1
統計
Statistics
本論文已被瀏覽 5626 次,被下載 0
The thesis/dissertation has been browsed 5626 times, has been downloaded 0 times.
中文摘要
根據統計胃癌在全球癌症發生率位居第四名並在癌症相關死亡人數排名達第二名,在胃癌中主要以腺癌(Adenocarcinoma)佔發生總數的90-95%,一般可依照Lauren’s分類以組織學分方式將胃癌分成兩大類,分別是腸型胃腺癌(Intestinal-type Adenocarcinoma)及瀰漫型腺癌(Diffuse Adenocarcinoma)。目前胃癌治療困難的原因在於發現的時期太晚,大多發現時已經是末期。而胃癌高度的抗細胞凋亡與染色體不穩定也造成了臨床上藥物治療的困難,因此了解胃癌發病機制中涉及的機制非常重要的,最近的分子病理學研究已經闡明胃癌是累積的基因組損傷的結果,影響癌症發展所必需的細胞功能(例如,生長信號自足,逃避抗生長信號,凋亡抵抗,持續複製潛能,血管生成誘導以及侵襲性或轉移潛能),胃癌的起始與發展和KRAS、E-cadherin、P53、APC及PTEN具有相關性。
我們實驗室中建立了HK-Cre LKB1L/L PTENL/L和HK-Cre LKB1L/L PTENL/L P53L/L小鼠模型,利用Cre重組酶特異性消除胃部LKB1,PTEN和P53的功能。並且發現HK-Cre LKB1L/L PTENL/L P53L/L小鼠模式會有較高機率發生遠端轉移及周邊組織的侵襲,接著我們利用次世代定序(Next Generation Sequencing , NGS)的方式去分析兩者間差異,發現在HK-Cre LKB1L/L PTENL/L P53L/L小鼠胃癌細胞中會高度表現Twist1。Twist1是一種構型為基本螺旋-環-螺旋(basic helix-loop-helix, bHLH)的轉錄因子,在胚胎發育中多個階段皆扮演的重要的角色,並且對腫瘤轉移能力、腫瘤起始和原發性腫瘤生長都有顯著的相關性。在這項研究中,我們發現Twist1可以誘導胃癌細胞發生上皮 - 間質轉化(EMT)進而增加細胞活體外的運動能力也表示 Twist1亦可促進活體內胃癌細胞對周邊組織的侵襲性及提升遠端轉移的機率。
Abstract
Gastric cancer is the second leading cause of cancer death worldwide, although the incidence rates is bound by regional geographic variations. More than 95% of gastric cancers are adenocarcinomas developed from the glandular epithelium of the stomach lining. In clinical, a large number of patients are diagnosed when the tumor reached at unresectable late stage. Therefore, it is very important to understand the molecular and pathogenic mechanisms for the development of gastric cancer. Recent molecular pathology studies have elucidated a detailed profile of genetic alterations associated with gastric cancer initiation and progression, which includes activation KRAS and inactivation or loss of E-cadherin, P53, APC and PTEN. Our lab have successfully generated H/K+ATPase–Cre (HK-Cre) LKB1L/L PTENL/L and HK-Cre LKB1L/L PTENL/L P53L/L gastric carcinoma mouse models, which directs the expression of Cre recombinase specific in parietal cells of the stomach to abrogate LKB1,PTEN and P53 function. We first confirmed that our murine gastric carcinoma models develop metastatic gastric carcinomas, histologically similar to human gastric intestinal type carcinoma. In addition, we observed that the metastatic capacity in the HK-Cre LKB1L/L PTENL/L P53L/L mouse model is significantly higher than HK-Cre LKB1L/L PTENL/L model. We further compared gene expression between these two types mouse stomach tumors cell by using Next Generation Sequencing (NGS) analysis, Notably, we found Twist1 is significantly increased expression in the HK-Cre LKB1L/L PTENL/L P53L/L tumor tissue compared to HK-Cre LKB1L/L PTENL/L and wild type. Twist1 is a basic helix-loop -helix (bHLH) transcription factor which plays pivotal roles in multiple stages of embryonic development, inflammation and tumor progression. Ultimately, we demonstrated that Twist1 promotes epithelial-mesenchymal transition (EMT) to enhance gastric cancer cell motility in vitro which may contribute to the metastatic dissemination of cancer cells and the formation of metastasis in vivo.
目次 Table of Contents
國立中山大學研究生論文審定書 i
中文摘要 ii
Abstract iii
縮寫表 v
第一章 緒論 1
1.1 胃癌 1
1.2 胃癌動物模式建立 2
1.3 LKB1基因在癌症中的角色 3
1.4 PTEN基因在癌症中的角色 4
1.5 TP53基因在癌症中的角色 4
1.6 Twist1轉錄因子在癌症中的角色 5
第二章 材料與方法 6
2.1 胃癌動物模式 6
2.2 小鼠尾巴DNA萃取 6
2.3 聚合酶連鎖反應 6
2.4 小鼠腫瘤組織處理 8
2.5 組織化學免疫染色 8
2.6 BrdU增殖分析 9
2.7 即時逆轉錄聚合酶鏈鎖反應 9
2.8 細胞培養 10
2.9 細胞轉染 11
2.10 細胞增生試驗 11
2.11 流式細胞儀 11
2.12 西方墨點法 12
2.13 傷口癒合試驗 13
2.14 腫瘤細胞侵襲試驗 13
2.15 3D懸吊式液珠試驗 13
2.16 阿利辛蘭AB染色(Alcian Blue stain) 14
2.17 PAS染色法(Periodic Acid-Schiff stain) 14
2.18 Twist1抑制劑試驗 14
2.19 次世代定序(Next Generation Sequencing , NGS) 14
2.20 統計分析 14
第三章 實驗結果 16
3.1在小鼠胃部特異性去除LKB1、PTEN的活性可導致胃癌發生,如再搭配P53的失活可促使胃癌發生轉移 16
3.2 P53缺失後使胃部腫瘤高度表現腫瘤幹細胞標誌、躲避免疫攻擊及抗凋亡能力 18
3.3 P53缺失會促使上皮細胞中胚轉化(epithelial-mesenchymal transition,EMT)發生 18
3.4 HLPP的腫瘤細胞具有腫瘤發生(tumorigenesis)的能力 18
3.5 在P53缺失的小鼠動物模式中會高度表現Twist1,有助於發生增加胃癌發生轉移 19
3.6 Twist1高表現能促進胃癌細胞發生移行及幹細胞能力 20
3.7 Twist1抑制劑能有效抑制HLPP胃癌細胞移行能力 21
第四章 結果與討論 22
實驗結果圖 24
圖一 胃癌小鼠動物模式建立及PCR基因鑑定分析 24
圖二 不同基因型胃癌小鼠的生理變化及其生存率變化表 26
圖三 H+/K+ ATPase-cre特異性表現於小鼠胃部壁細胞中 27
圖四 H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L (HLP)及H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃部會有明顯腫瘤形成 29
圖五 在H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃癌動物模式中可以看到遠端轉移的發生 31
圖六 H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃部腫瘤會高度表現腫瘤幹細胞標誌、躲避免疫攻擊及抗凋亡能力 32
圖七 H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃部腫瘤有明顯上皮細胞中胚轉化(epithelial-mesenchymal transition,EMT)的發生 33
圖八 從H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L (HLP)及H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠中培養胃部腫瘤細胞 34
圖九 比較H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L (HLP)及H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃癌細胞的腫瘤發生(tumorigenesis)的能力 38
圖十 比較H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L (HLP)及H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃癌細胞的蛋白質表現 39
圖十一 比較H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L (HLP)及H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃癌細胞對於化療藥物的敏感性 40
圖十二 H+/K+ ATPase-cre ; LKB1L/L ; PTENL/L ; P53L/L (HLPP)小鼠胃癌動物模式中會高度表現Twist1 43
圖十三 Twist1在人類胃癌病患中的影響 44
圖十四 去除Twist1表現能抑制胃癌細胞移行及幹細胞能力 46
圖十五 去除HLPP內源性Twsit1會使相關基因受到抑制 47
圖十六 Twist1抑制劑能有效抑制HLPP胃癌細胞移行能力 48
參考文獻 49
參考文獻 References
1. Dicken, B.J., et al., Gastric adenocarcinoma: review and considerations for future directions. Ann Surg, 2005. 241(1): p. 27-39.
2. Tan, P. and K.G. Yeoh, Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology, 2015. 149(5): p. 1153-1162 e3.
3. McLean, M.H. and E.M. El-Omar, Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol, 2014. 11(11): p. 664-74.
4. Hu, B., et al., Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol, 2012. 3(3): p. 251-61.
5. Roukos, D.H., et al., Gastric cancer: introduction, pathology, epidemiology. Gastric Breast Cancer, 2002. 1(1): p. 1-3.
6. Yasui, W., et al., Molecular-pathological prognostic factors of gastric cancer: a review. Gastric cancer, 2005. 8(2): p. 86-94.
7. Horii, A., et al., The APC gene, responsible for familial adenomatous polyposis, is mutated in human gastric cancer. Cancer research, 1992. 52(11): p. 3231-3233.
8. Guilford, P., et al., E-cadherin germline mutations in familial gastric cancer. Nature, 1998. 392(6674): p. 402-405.
9. Uchino, S., et al., p53 mutation in gastric cancer: a genetic model for carcinogenesis is common to gastric and colorectal cancer. International journal of cancer, 1993. 54(5): p. 759-764.
10. Zhang, B.G., et al., microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncology reports, 2012. 27(4): p. 1019-1026.
11. Takahashi, M., et al., A novel germline mutation of the LKB1 gene in a patient with Peutz-Jeghers syndrome with early-onset gastric cancer. Journal of gastroenterology, 2004. 39(12): p. 1210-1214.
12. Wadhwa, R., et al., Gastric cancer—molecular and clinical dimensions. Nature reviews Clinical oncology, 2013. 10(11): p. 643.
13. Kim, T.-H. and R.A. Shivdasani, Stomach development, stem cells and disease. Development, 2016. 143(4): p. 554-565.
14. Gupta, A., et al., Loss of anterior gradient 2 (Agr2) expression results in hyperplasia and defective lineage maturation in the murine stomach. Journal of Biological Chemistry, 2013. 288(6): p. 4321-4333.
15. Choi, E., et al., Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut, 2014: p. 1711-1720.
16. Jian, S.-F., et al., Utilization of liquid chromatography mass spectrometry analyses to identify LKB1-APC interaction in modulating Wnt/beta-catenin pathway of lung cancer cells. Molecular Cancer Research, 2014: p. 622-635.
17. Baas, A.F., L. Smit, and H. Clevers, LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends in cell biology, 2004. 14(6): p. 312-319.
18. Korsse, S., M. Peppelenbosch, and W. van Veelen, Targeting LKB1 signaling in cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2013. 1835(2): p. 194-210.
19. Shackelford, D.B. and R.J. Shaw, The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nature Reviews Cancer, 2009. 9(8): p. 563-575.
20. Mihaylova, M.M. and R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature cell biology, 2011. 13(9): p. 1016.
21. Katajisto, P., et al., LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nature genetics, 2008. 40(4): p. 455-459.
22. LoPiccolo, J., et al., Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resistance Updates, 2008. 11(1-2): p. 32-50.
23. Hollander, M.C., G.M. Blumenthal, and P.A. Dennis, PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nature Reviews Cancer, 2011. 11(4): p. 289.
24. Matsuoka, T. and M. Yashiro, The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers, 2014. 6(3): p. 1441-1463.
25. Song, M.S., L. Salmena, and P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nature reviews Molecular cell biology, 2012. 13(5): p. 283-296.
26. Fei, G., et al., Reduced PTEN expression in gastric cancer and in the gastric mucosa of gastric cancer relatives. European journal of gastroenterology & hepatology, 2002. 14(3): p. 297-303.
27. Yang, Z., et al., Reduced expression of PTEN and increased PTEN phosphorylation at residue Ser380 in gastric cancer tissues: a novel mechanism of PTEN inactivation. Clinics and research in hepatology and gastroenterology, 2013. 37(1): p. 72-79.
28. Levine, A.J., J. Momand, and C.A. Finlay, The p53 tumour suppressor gene. Nature, 1991. 351(6326): p. 453-6.
29. Hollstein, M., et al., p53 mutations in human cancers. Science, 1991. 253(5015): p. 49-53.
30. Hanel, W., et al., Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ, 2013. 20(7): p. 898-909.
31. Fenoglio-Preiser, C.M., et al., TP53 and gastric carcinoma: a review. Hum Mutat, 2003. 21(3): p. 258-270.
32. Oh, B.Y., et al., Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget, 2016. 7(35): p. 57066-57076.
33. Way, T.D., et al., Emodin represses TWIST1-induced epithelial-mesenchymal transitions in head and neck squamous cell carcinoma cells by inhibiting the beta-catenin and Akt pathways. Eur J Cancer, 2014. 50(2): p. 366-378.
34. Yang, M.H., et al., Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nature cell biology, 2010. 12(10): p. 982-992.
35. Shiota, M., et al., Clusterin Mediates TGF-β–Induced Epithelial–Mesenchymal Transition and Metastasis via Twist1 in Prostate Cancer Cells. Cancer Research, 2012. 72(20): p. 5261-5272.
36. Li, Q.Q., et al., Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clinical cancer research, 2009. 15(8): p. 2657-2665.
37. Caramel, J., et al., A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell, 2013. 24(4): p. 466-480.
38. Zhu, Q.Q., et al., The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol, 2016. 37(1): p. 185-197.
39. Yu, J., et al., miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer. Mol Cancer, 2014. 13: p. 121-132.
40. Li, L.Z., et al., miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis, 2014. 35(2): p. 469-478.
41. Haga, C.L. and D.G. Phinney, MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J Biol Chem, 2012. 287(51): p. 42695-42707.
42. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 2010. 127(12): p. 2893-2917.
43. Bernards, N., et al., No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Annals of oncology, 2013. 24(12): p. 3056-3060.
44. Hundahl, S.A., Staging, stage migration, and patterns of spread in gastric cancer. Semin Radiat Oncol, 2002. 12(2): p. 141-149.
45. Katai, H., et al., Evaluation of the New International Union Against Cancer TNM staging for gastric carcinoma. Cancer, 2000. 88(8): p. 1796-1800.
46. Riihimaki, M., et al., Metastatic spread in patients with gastric cancer. Oncotarget, 2016. 7(32): p. 52307-52316.
47. Wang, G., et al., A comparison of Twist and E-cadherin protein expression in primary non-small-cell lung carcinoma and corresponding metastases. European Journal of Cardio-Thoracic Surgery, 2011. 39(6): p. 1028-1032.
48. Morel, A.P., et al., EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet, 2012. 8(5): e1002723.
49. Pallier, K., et al., TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma. PLoS One, 2012. 7(1):e29954.
50. Steinestel, K., et al., Clinical significance of epithelial-mesenchymal transition. Clin Transl Med, 2014. 3: p. 17.
51. Yang, M.H., et al., Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol, 2010. 12(10): p. 982-992.
52. Renard, I., et al., Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples. Eur Urol, 2010. 58(1): p. 96-104.
53. Mehrotra, J., et al., Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res, 2004. 10(9): p. 3104-3109.
54. Kogan-Sakin, I., et al., Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ, 2011. 18(2): p. 271-281.
55. Kwok, W.K., et al., Role of p14ARF in TWIST-mediated senescence in prostate epithelial cells. Carcinogenesis, 2007. 28(12): p. 2467-2475.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.233.6
論文開放下載的時間是 校外不公開

Your IP address is 3.149.233.6
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code