Responsive image
博碩士論文 etd-0723101-095556 詳細資訊
Title page for etd-0723101-095556
論文名稱
Title
電阻點銲過程中動態電阻與熱流之模擬
Modeling Dynamic Electrical Resistance and Thermal Flow During Resistance Spot Welding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-29
繳交日期
Date of Submission
2001-07-23
關鍵字
Keywords
焦耳熱、接合面、接觸電阻、動態電阻、勞倫茲力
electrical contact resistance, joule heat, dynamic resistance, Lorentz force, faying surface
統計
Statistics
本論文已被瀏覽 5682 次,被下載 3311
The thesis/dissertation has been browsed 5682 times, has been downloaded 3311 times.
中文摘要
摘 要
了解動態電阻的模式對電阻點銲過程中傳遞現像的預測與銲接品質的監控是必要的,在本研究中,動態電阻值取電極端半徑內有效面積中之上下工件本身電阻值、上下工件間接觸電阻值及工件-電極界面間接觸電阻值之總和。接觸電阻包括集束電阻與膜電阻,其值為硬度、溫度、電極力、電阻率及表面情況之函數。電阻點銲過程中,工件中具相變化非穩態之軸對稱質量、動量、能量、溶質及磁場強度傳遞與在電極中之溫度及磁場強度傳遞,已被系統化地探討。電磁力、焦耳熱、電極-工件界面與工件-工件界面之熱生成、不同相間之不同性質及電極幾何形狀皆被考慮。所預測之熔區厚度及動態電阻曲線與實驗數據有良好的吻合。除了熔區飛濺現像外,動態電阻曲線被概分為四個階段,第一階段之迅速下降乃因絕緣膜電阻之快速下降造成,第二階段曲線之上升乃因材料本身電阻係數隨溫度增加而變大所造成材料本身電阻及接觸電阻之增加所造成的,當接觸電阻又開始下阪時,曲線上將出現有一反曲點,由於此時材料本身電阻之增加率仍大過接觸電阻之下降,故曲線仍維持上升趨勢,第三階段曲線反轉向下折形成峰部,下降主因乃高溫時材料電阻係數增加率明顯變小,其所造成之電阻上升率小過界面接觸面積增加所造成之電阻下降,以致動態電阻曲線向下遞減,另在第三階段末尾,主要工件-工件界面溫度已接近熔點,第四階段,界面開始熔合,逐漸消失,動態電阻曲線出現一折點,且下降趨勢減緩。
電磁力對熔區流場之影響已被證明,電流增加、磁擴散係數減小及電極端半徑減小皆可造成電極角部位有較高電流密度,有時甚至高到可將電 極角部位工件熔化,傷及工件表面及損害電極。
Abstract
Abstract
Dynamic electrical resistance during resistance spot welding has been quantitatively modeled and analyzed in this work. A determination of dynamic resistance is necessary for predicting the transport processes and monitoring the weld quality during resistance spot welding. In this study, dynamic resistance is obtained by taking the sum of temperature dependent bulk resistance of the workpieces and contact resistances at the faying surface and electrode-workpiece interface within an effective area corresponding to the electrode tip where welding current primarily flows. A contact resistance is composed of constriction and film resistances, which are functions of hardness, temperature, electrode force, electrical resistivity and surface condition. Unsteady, axisymmetric transport of mass, momentum, energy, species, and magnetic field intensity with a mushy-zone phase change in workpieces and temperature, and magnetic fields in electrodes during resistance spot welding, are systematically investigated. Electromagnetic force, joule heat, heat generation at the electrode-workpiece interface and faying surface between workpieces, different properties between phase, and geometries of electrodes are taken into account. The predicted nugget thickness and dynamic resistance versus time show quite good agreement with available experimental data. Excluding expulsion, the dynamic resistance curve can be divided into four stages. A rapid decrease of dynamic resistance in stage 1 is attributed to decreases in film resistances at the faying surface and electrode-workpiece interface. In stage 2, the increase in dynamic resistance results from the primary increase of bulk resistance in the workpieces and an increase of the sum of contact resistances at the faying surface and electrode-workpiece interface. Dynamic resistance in stage 3 decreases, because increasing rate of bulk resistance in the workpieces and contact resistances decrease. In stage 4 decrease of dynamic resistance is mainly due to the formation of the molten nugget at the faying surface. The molten nugget is found to occur in stage 4 rather than stage 2 or 3 as qualitatively proposed in the literature. The effects of different parameters on the dynamic resistence curve are also presented. Besides, electromagnetic force effect on velocity field of molten nugget was proven to be crucial. Higher current, smaller magnetic diffusivity and decreasing the radius of electrode tip will lead to high current density around the corner between electrode and workpiece. Sometimes the corner of electrode and surface of workpieces will be melted due to local high current density.
目次 Table of Contents
第一章 緒論 1
1-1 簡介 1
1-2 文獻回顧 1
1-3 研究目的 5
第二章 理論分析 6
2-1 座標系與假設條件 6
2-2 接觸電阻 7
2-3 工件之統御方程式 9
2-4 電極之統御方程式 11
2-5 邊界條件及初始條件 12
2-6 數值方法 17
第三章 結果與討論 18
3-1 動態電阻模擬 18
3-2 熱流模擬 21
第四章 結論 25
4-1 動態電阻變化 25
4-2 電流場、溫度場、速度場及熔區之成長 26
參考文獻 28
圖表 33
附錄 A 60
附錄 B
參考文獻 References
[1] Bowers, R. J., Sorensen, C. D., and Eagar, T. W., 1990,“Electrode Geometry in Resistance Spot Welding,”Welding Journal , Vol. 69, pp. 45-s-51-s.
[2] Yeung, K. S., and Thornton, P. H., 1999,“Transient Thermal Analysis of Spot Welding Electrodes,”Welding Journal , Vol. 78, pp. 1-s-6-s.
[3] Kimchi, M., 1984,“Spot Weld Properties When Welding With Expulsion—A Comparative Study,”Welding Journal , Vol. 63, pp. 58-s-63-s
[4] Kaiser, J. G., 1981,The effect of Electrical Resistance on Nugget Formation During Spot Welding, Master Dissertation, MIT
[5] Bhattacharya, S., and Andrew, D. R.,1972,“Resistance Welding Quality Monitoring,” Sheet Metal Industries, Vol. 49, pp. 460-466.
[6] Andrews, D. R., and Broomhead, J., 1975,“Quality Assurance for Resistance Spot Welding,”Welding Journal, Vol. 54, pp. 431-435.
[7] Roberts, W. L., 1951,“Resistance Variations During Spot Welding,”Welding Journal, Vol. 30, pp. 1004-1019.
[8] Bhattacharya, S., and Andrew, D. R.,1974,“Significance of Dynamic Resistance Curves in the Theory and Practice of Spot Welding, ”Welding and Metal Fabrication, Vol. 42, pp. 296-301
[9] Greenwood, J. A., and Williamson J. B. P., 1958,“Electrical Conduction in Solids II. Theory of Temperature-Dependent Conductors,”Proceedings of the Royal Society of London, Vol. 246, pp. 13-31.
[10] Wei, P. S., Wang, S. C., and Lin, M. S., 1996,“Transfer Phenomena During Resistance Spot Welding,”ASME Journal of Heat Transfer, Vol. 118, pp. 762-773.
[11] Savage, W. F., Nippes, E. F., and Wassell, F. A., 1977,“Static Contact Resistance of Series Spot Welds,”Welding Journal , Vol. 56, pp. 365-s-370-s.
[12] Savage, W. F., Nippes, E. F., and Wassell, F. A., 1978,“Dynamic Contact Resistance of Series Spot Welds,”Welding Journal , Vol. 57, pp. 43-s-50-s.
[13] Zhang, H., 1999,“Explusion and Its Influence on Weld Quality,”Welding Journal , Vol. 78, pp. 373-s-380-s.
[14] Dickinson, D. W., Franklin, J. E., and Stanya, A., 1980,“ Characterization of Spot Welding Behavior by Dynamic Electrical Parameter Monitoring,”Welding Journal, Vol. 59, pp. 170-s-176-s.
[15] Gedeon, S. A., and Eagar, T. W., 1986,“Resistance Spot Welding of Galvanized Steel : Part II—Mechanisms of Spot Weld Nugget Formation,”Metall. Trans. B , Vol. 17B, pp. 887-s-901-s.
[16] Gedeon, S. A., Sorensen, C. D., Ulrich, K. T., and Eagar, T. W., 1987,“Measurement of Dynamic Electrical and Mechanical Properties of Resistance Spot Welds,”Welding Journal , Vol. 66, pp. 378-s-385-s.
[17] Studer, F. J., 1939,“Contact Resistance in Spot Welding,”Welding Journal , Vol. 18, pp. 374-s-380-s.
[18] Kouwenhoven, W. B., and Tampico., J., 1941,“Surface Polish and Contact Resistance,”Welding Journal , Vol. 20, pp. 468-s-471-s.
[19] Tylecote, R. F., 1941,“Spot Welding, Part III: Contact Resistance,”Welding Journal , Vol. 20, pp. 591-s-602-s.
[20] Vogler, M. M., and Sheppard, S. D., 1993,“Electrical Contact Resistance under High Loads and Elevated Temperatures,”Welding Journal , Vol. 72, pp. 231-s-238-s.
[21] Thornton, P. H., Krause, A. R., and Davis, R. G., 1996,“Contact Resistance in Spot Welding,”Welding Journal , Vol. 75, pp. 402-s-412-s.
[22] Thornton, P. H., Krause, A. R., and Davis, R. G., 1997,“Contact Resistance of Aluminum,”Welding Journal , Vol. 76, pp. 331-s-341-s.
[23] Kaiser, J. G., Dunn, G. J., and Eagar, T. W., 1982,“The Effect of Electrical Resistance on Nugget Formation during Spot Welding,”Welding Journal , Vol. 61, pp. 167-s-174-s.
[24] Holm, R., 1967, Electric Contacts-Theory and Application, 4th edition, Springer-Verlag,Berlin,
[25] Greenwood, J. A., 1966,“Constriction Resistance and the Real Area of Contact,”British Journal of Applied Physics, Vol. 17, pp. 1621-1632.
[26] Greenwood, J. A., and Williamson, J. B. P., 1966,“ Contact of Nominally Flat Surfaces,”Proceedings of the Royal Society of London. Section A, Vol. 295, pp. 300-319
[27] Greenwood, J. A., 1961,“Temperature in Spot Welding,”British Welding Journal, Vol. 8, pp. 316-322.
[28] Bentley, K. P., Greenwood, J. A., Knowlson, P. M., and Backer, R.G., 1963,“Temperature Distribution in Spot Welds,”British Welding Journal, pp. 613-619.
[29] Rice, W., and Funk, E. J., 1967,“An Analytical Investigation of the Temperature Distributions During Resistance Welding,”Welding Journal , Vol. 46 , pp. 175-s-186-s.
[30] Gould, J. F., 1987,“ An Examination of Nugget Development During Spot Welding, Using Both Experimental and Analytical Techniques,”Welding Journal, Vol. 66, pp. 1-s-10-s.
[31] Cho, H. S., and Cho, Y. J., 1989,“A Study of Thermal Behavior in Resistance Spot Welds,”Welding Journal , Vol. 68 , pp. 236-s-244-s.
[32] Cho, H. S. ,and Cho, Y. J., 1990,“A Study on the Shut Effect in Resistance Spot Welding,”Welding Journal , Vol. 69 , pp. 308-s-317-s.
[33] Tslaf, A. L., 1982,“A Thermophysical Criterion for the Weldability of Electric Contact Material in a Steady-state Regime,”IEEE Transactions on Components. Hybrids and Manufacturing Technology, Vol. CHMT-5 , pp. 147-152.
[34] Tsai, C. L., Dai, D. W., Dickinson, D. W., and Papritan, J. C., 1991,“Analysis and Development of a Real-Time Control Methodology in Resistance Spot Welding,”Welding Journal , Vol. 69, pp. 339-s-351-s.
[35] Tsai, C. L., Jammal, O. A., Papritan, J. C., and Dickinson, D. W., 1992,“Modeling of Resistance Spot Weld Nugget Growth,”Welding Journal , Vol. 70, pp. 47-s-54-s.
[36] Na, S. J., and Park, S. W., 1996,“A Theoretical Study on Electrical and Thermal Response in Resistance Spot Welding,”Welding Journal , Vol. 75, pp. 233-s-241-s.
[37] Huh, H., and Kang, J., 1997,“Electrothermal Analysis of Electric Resistance Spot Welding Process by a 3-D Finite Element Method,”J. of Materials Processing Technology, Vol. 63 , pp. 672-677
[38] Han, Z., Indacochea, J. E., Chen, C. H., and Bhat, , S., 1993,“ Welding Nugget Development and Integrity in Resistance Spot Welding of High-Strength Cold-Rolled Sheet Steels,”Welding Journal, Vol. 72, pp. 209-s-216-s.
[39] Wei, P. S., and Ho., C. Y., 1990,“Axisymmetric Nugget Growth During Resistance Spot Welding,”ASME Journal of Heat Transfer, Vol. 112, pp. 309-316.
[40] Wei, P. S., and Yeh. F. B., 1991,“Factor Affecting Nugget Growth With Mushy-Zone Phase Change During Resistance Spot Welding,”ASME Journal of Heat Transfer, Vol. 113, pp. 643-649.
[41] Khan, J. A., Broach, K., and Arefin Kabir, A. A. S., 2000,“Numerical Thermal Model of Resistance Spot Welding in Aluminum,”J. Thermophys. Heat Transfer, Vol. 14, pp. 88-s-95-s
[42] Browne, D. J., Chandler, H. W., Evans, J. T., and Wen, J., 1995,“Computer Simulation of Resistance Spot Welding in Aluminum: Part I,”Welding Journal , Vol. 74, pp. 334-s-344-s.
[43] Browne, D. J., Chandler, H. W., Evans, J. T., James, P. S., Wen, J., and Newton, C. J., 1995,“Computer Simulation of Resistance Spot Welding in Aluminum: Part II,”Welding Journal , Vol. 74, pp. 417-s-422-s.
[44] Sheppard, S. D., 1990,“Thermal and Mechanical Simulations of Resistance Spot Welding,”Welding Research Bulletin, Aug, No. 356, pp. 34-41
[45] Watanabe, Y., 1986,“New Instrument for Measuring Contact Resistance Developed for Studying Electrical Contact Phenomena, ”Wear, Vol. 112, pp. 1-15.
[46] Goodman, J. N., and Page T. F., 1989,“The Contact Resistance and Wear Behaviour of Separable Electrical Contact Materials, ”Wear, Vol. 131, pp. 177-191.
[47] Bowden, F. P., and Tabor, D., 1964, The Friction and Lubrication of Solids , Clarendon Press, Oxford
[48] Crinon, E., and Evans, J. T., 1998,“The Effect of Surface Roughness, Oxide Film Thickness and Interfacial Sliding on the Electrical Contact Resistance of Aluminum,”Mater. Sci. Eng. A, A242, pp. 121-128.
[49] Ono, Y., Hirayama, K., and Furukawa, K., 1974,“Electrical Resistivity of Molten Fe-C,Fe-Si, and Fe-C-Si Alloys,”Tetsu-to-Hagan’e, Vol. 60, pp. 2110-2118.
[50] Boyer, H. E., and Gall, T. L., 1984, Metal Handbook Desk Edition,ASM
[51] Touloukian, Y. S., editor, 1967, Thermophysical Properties of High Temperature Solid Materials, Vol. 4 : Oxides and Their Solutions and Mixtures, Macmillian Co., New York, pp. 214.
[52] Grange, R. A., Hribal, C. R., and Porter, L. F. , 1977,“Hardness of Tempered Martensite in Carbon and Low-Alloy Steels,”Metallurgical Transactions A., Vol. 8A, pp. 1775-1785.
[53] Bennon, W. D., and Incropera, F. P., 1987,“A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems-I. Model Formulation,”International Journal of Heat and Mass Transfer, Vol. 30, pp. 2161-2170.
[54] Bennon, W. D., and Incropera, F. P., 1988,“Numerical Analysis of Binary Solid-Liquid Phase Change Using a Continuum Model,”International Journal of Heat and Mass Transfer, Vol. 13, pp. 277-296.
[55] Kim, E. W., and Eagar, T. W., 1989,“Measurment of Transient Temperature Response during Resistance Spot Welds,”Welding Journal , Vol. 68, pp. 303-s-312-s.
[56] Cramer, K. R., and Pai, S. I., 1973, Magnetofluid Dynamics for Engineers and Applied Physicists, Scripta Publishing, Washington,DC, pp. 42-45
[57] Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow , Hemisphere Publishing Corp., New York
[58] Cunningham, A., and Begeman, M. L., 1965,“A Fundamental Study of Projection Welding Using High Speed Photography,Computer,”Welding Journal , Vol. 44, pp. 381-s-384-s.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code