Responsive image
博碩士論文 etd-0723102-092414 詳細資訊
Title page for etd-0723102-092414
論文名稱
Title
液晶技術運用於單噴流在靜止/旋轉管道內之熱傳研究
Single Jet Impingement Cooling in a Smooth Rotating Square Duct with Thermochromic Liquid Crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-03
繳交日期
Date of Submission
2002-07-23
關鍵字
Keywords
衝擊冷卻、熱傳、單噴流、旋轉、液晶
Impingement cooling, Rotating, Heat transfer, Single Jet, Liquid crystal
統計
Statistics
本論文已被瀏覽 5698 次,被下載 3108
The thesis/dissertation has been browsed 5698 times, has been downloaded 3108 times.
中文摘要
摘要

本實驗是模擬實際燃氣輪機渦輪葉片之前端位置(leading-edge egion)
,利用暫態液晶影像技術來探討在不同旋轉數下,單噴流衝擊在平滑表面上,觀察其熱傳現象。主要目的在於評估以不同的旋轉數對於平滑旋轉管道內部之熱傳影響。實驗控制的主要參數有:旋轉數(Ω=0rpm、Ω=30rpm與Ω=60rpm),雷諾數(Rej=7000與Rej=9000)及均勻壁溫。
實驗結果顯示,旋轉所造成的離心力以及科氏力,使得噴流彎曲,造成整體的熱傳效果下降,可明顯發現隨著旋轉數增加,平均紐塞數跟著下降9%。且平均紐塞數會隨著雷諾數的增加而變大14%。


Abstract
Abstract

The present investigation is performed by repeated experiments to simulate the impingement cooling heat transfer in leading-edge region of gas turbine with thermochromic liquid crystals. The experiments was studied on a rotating square duct without crossflow effect from three different rotational speeds of 0, 30 and 60 rpm. The study covered jet Reynolds number 7000 to 9000 and the rotational speeds from 0 to 60 rpm.

Results are presented and focused on the effect of three different rotational speeds. Nusselt number values increased (up to 14%) with Reynolds number. However, Rotation induced coriolis and centrifuged forces and decreased the Nusselt number values about 9% which is quite coincided with those of previous studies.

目次 Table of Contents
目 錄
頁 次
目錄……………………………………………………………………….………i
圖目錄…………………………………………………………………………. iv
表目錄………………………………………………………………………… vii
符號說明……………………………………………………………………viii
論文摘要(中文)……………………………………………………………x
論文摘要(英文)………..…………………….……………………………xi

第一章 緒論………………………………………………………………1
1-1 前言………………………………………………………………1
1-2 背景與目的………………………………………………………1
1-3 文獻回顧…………………………………………………………2
1-4 研究範圍…………………………………………………………7

第二章 實驗設備………………………………………………………….11
2-1 旋轉及測試系統………………………………………………11
2-2 測試區裝置……………………………………………………12
2-3 高壓空氣供應及壓力、流量控制系統……………………12
2-4 加熱系統…..…………………………………………………12
2-5 溫度量測系統…………………………………………………12
2-6 暗房……………………………………………………………13
2-7 液晶.……………………………………………………………13
2-8 影像擷取系統………………………………………………13

第三章 實驗量測方法及步驟…………………………………………16
3-1 實驗量測方法…………………………………………………16
3-1-1 流量量測…………………………………………………16
3-1-2 溫度量測………………………………….……………17
3-1-3 液晶校正…………………………………….…………17
3-2 實驗步驟………………………………………………………18

第四章 實驗數據處理…………………………………………………20
4-1 細部熱傳係數………………………………….………………20
4-2 局部紐塞數…..…………………………………………………21
4-3 橫向平均紐塞數..………………………………………………21

第五章 誤差分析……………………………………………………….22

第六章 結果與討論…………………………………………………….25
6-1 細部熱傳係數.…………………………………………………26
6-1-1 旋轉對細部熱傳係數之影響.…………………………26
6-1-2 雷諾數對細部熱傳係數之影響….……….……….26
6-1-3 橫向平均熱傳係數與X之關係..……………………26
6-1-4 中心線局部熱傳係數與X之關係..………………..27
6-2 入口及出口溫度與時間之關係...……………………………27
6-3 平均熱傳係數……………………………….………………27

第七章 結論與建議…………………………………………………….46

參考文獻…………………………………………….…………………………47



圖 目 錄

頁次
圖2.1 實驗設備配置圖………………………………………………….14
圖2.2 測試區幾何尺寸圖………………………………………………15
圖3.1 實驗步驟流程圖..……………………………………………19
圖6.1 平滑管道內在Rej=7000,Ω= 0 rpm時之細部紐賽數(Nusselt number) 分佈圖……………………………………….……28
圖6.2 平滑管道內在Rej=7000,Ω= 30 rpm時之細部紐賽數(Nusselt number) 分佈圖…………….………………………………29
圖6.3 平滑管道內在Rej=7000,Ω= 60 rpm時之細部紐賽數(Nusselt number) 分佈圖…………….………………………………30
圖6.4 雷諾數Rej=7000,三種不同的旋轉數對細部紐賽數(Nusselt number) 之影響…………………….………………………31
圖6.5 平滑管道內在Rej=9000,Ω= 0 rpm時之細部紐賽數(Nusselt number) 分佈圖……………………………………….……32
圖6.6 平滑管道內在Rej=9000,Ω= 30 rpm時之細部紐賽數(Nusselt number) 分佈圖…………….………………………………33
圖6.7 兩種不同的雷諾數對細部紐塞數(Nusselt number)之影響..34
圖6.8 靜止平滑管道內在Rej=7000,橫向平均紐賽數(Nusselt number)與X之關係………………..………………………………...35
圖6.9 平滑管道內在Rej=7000,Ω= 30 rpm時,橫向平均紐賽數(Nusselt number)與X之關係………………………………36
圖6.10 平滑管道內在Rej=7000,Ω= 60 rpm時,橫向平均紐賽數(Nusselt number)與X之關係………………………………37
圖6.11 在Rej=7000,不同旋轉數下,橫向平均紐賽數(Nusselt number)與X之關係……………………..…………...………………38
圖6.12 靜止平滑管道內在Rej=9000,橫向平均紐賽數(Nusselt number)與X之關係………………..………………………………...39
圖6.13 平滑管道內在Rej=9000,Ω= 30 rpm時,橫向平均紐賽數(Nusselt number)與X之關係………………………………40
圖6.14 在Rej=9000,不同旋轉數下,橫向平均紐賽數(Nusselt number)與X之關係……………………..…………...………………41
圖6.15 Rej=7000,不同旋轉數下,中心線局部紐賽數與X之關係…………………..………..……..……….……………….42
圖6.16 Rej=9000,不同旋轉數下,中心線局部紐賽數與X之關係… ………………..………..……..………………………..43
圖6.17 入口及出口溫度與時間之關係圖……………………..……44
圖6.18 平均紐賽數與雷諾數之關係,並和先前之研究者相比較…45

表 目 錄

頁次
表1.1 有關旋轉通道衝擊冷卻實驗相關參數比較…………….……..9
表1.2 通道幾何尺寸與相關參數…………………………………….10
表5.1 參數及變數誤差值…………………………………………….24


符 號 說 明

A :目標壁面的面積
Af :噴嘴總面積與目標壁面的面積之比值(open area ratio),
nπ /4A
dj :圓孔噴嘴直徑
Cp :比熱
Dh :水力直徑,2 W H/(W+H)
h :熱對流係數
kf :空氣的熱傳導係數
:測試區長度
Νu :局部鈕塞數
Νur :旋轉管道之鈕塞數
Νus :靜止管道之鈕塞數
P :絕對壓力
R : 旋轉半徑(=150mm)
Rej :噴流雷諾數,Vj dj /ν
ReΩ :旋轉雷諾數,Ωdj 2/ν
Ro :旋轉數,ReΩ/ Rej=Ωdj /Vj
t :時間
Tb :空氣局部平均溫度(air buck temperature)
Tj :噴嘴出口溫度
Tw :壁溫
Vj :噴嘴出口速度
x :測向沿出口方向的距離
x/ dj :無因次沿出口方向的距離與噴嘴直徑之比
Zn :目標壁面與噴嘴的距離

希臘字母
α :測試件之熱擴散係數
Δ :差距
ν :空氣動黏度係數
:密度(Density)
τ :杜罕墨重疊原理中之時間步階變化
Ω :旋轉速度
上標
__ :平均值

下標
a :空氣
i : 初始值
j :噴流
n :噴嘴數目
w :壁邊
∞ :主流場
Ω :旋轉
參考文獻 References
參 考 文 獻
1. Akella, K. V., and Han, J. C., 1999, “Impingement Cooling in Rotating Two-Pass Rectangular Channels with ribbed walls,” Journal of Thermophysics and heat transfer, Vol. 13, pp. 364-371.

2. Akella K. V., and Han J. C., 1998, “Impingement Coling in Rotating Two-Pass Rectangular Channels,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 12, pp. 79-85.

3. Becko, Y., 1976, “Impingement Cooling-a Review,” Von Karman Institute for Fluid Dynamics, Lecture Series 83, Turbine Blade Cooling.

4. Behbahani, A. I., Disimile, P. J., and Aydore, S., 1989, “Flow Visualization in An Impinging Circular Air Jet,” National Heat Transfer Conference HTD-Vol. 112, Heat Transfer Measurements, Analysis, and Flow Visualization.

5. Baydar, E., 1999, “Confined impinging air jet at low Reynolds numbers,” Experimental Thermal and Fluid Science, Vol. 19, pp. 27-33.

6. Brignoni, L. A., and Garimella, S. V., 2000, “Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 1133-1139.

7. Chou, Y. J., and Hung, Y. H., 1994, “Impingement Cooling of an Isothermally Heated Surface With a Confined Slot Jet,” Journal of Heat Transfer, Vol.116, pp. 479-482.

8. Colucci, D. W., and Viskanta R., 1996, “Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet,” Experimental Thermal and Fluid Science, Vol. 13, pp.71-80.

9. Chandra, P. R., Fontenot, M. L., and Han, J. C., 1998, “Effect of Rib Profiles on Turbulent Channel Flow Heat Transfer,” Journal of Thermophysics and Heat Transfer, Vol. 12, pp. 116-118.

10. Carslaw H. S., and Jaeger J. C., 1959, “Conduction of Heat in Solid,” Oxford University Press, U. K..

11. Donaldson, C. D., and Snedeker, R. S., 1971a, “A Study of Free Jet Impingement, Part 1. Mean Properties of Free and Impinging Jets,” Journal of Fluid Mechanics, Vol. 45, part 2, pp.281-319.

12. Donaldson, C. D., and Snedeker, R. S., 1971b, “A Study of Free Jet Impingement, Part 2. Free Jet Turbulent Structure and Impingement Heat Transfer,” Journal of Fluid Mechanics, Vol. 45, Part 3, pp.477-512.

13. Fitzgerald, J. A., and Garimella, S. V., 1997, “Flow Field Effects on Heat Transfer in Confined Jet Impingement,” Journal of Heat Transfer, Vol. 119, pp. 630-632.

14. Gardon, R., and Cobonpue, J., 1963, “Heat Transfer Between a Flat Plate and Jets of Air Impinging on It,” in: International Developments in Heat Transfer, Proceedings of the 2nd International Heat Transfer Conference, ASME, pp. 454-460.

15. Gardon, R., and Akfirat, J. C., 1965 “The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets,” International Journal of Heat Mass Transfer, Vol. 8, pp. 1261-1272.

16. Gardon, R., and Akfirat, J. C., 1966, “Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets,” Journal of Heat Transfer, Vol.88, pp. 101-108.

17. Gau, C., and Chung, C. M., 1991, “Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process,” Journal of Heat Transfer, Vol. 113, pp. 858-864.

18. Gau, C., and Lee, C. C., 1992, “Impingement Cooling Flow Structure and Heat Transfer along Rib-Roughened Walls,” International Journal of Heat Mass Transfer, Vol. 35, pp. 3009-3020.

19. Gau, C., and Lee, I. C., 2000, “Flow and Impingement Cooling Heat Transfer Along Triangular Rib-Roughened Walls,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 4405-4418.

20. Goldstein, R. J., and Behbahani, A. I., 1982, “Impingement of a Circular Jet With and Without Cross Flow,” International Journal of Heat and Mass Transfer, Vol. 25, pp. 1377-1382.

21. Goldstein, R. J., Behbahani, A. I., and Heppelmann, K. K., 1986, “Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet,” International Journal of Heat and Mass Transfer, Vol. 29, pp. 1227-1235.

22. Goldstein, R. J., and Bouchez, J. P., 1975, “Impingement Cooling From a Circular Jet in A Crossflow,” International Journal of Heat and Mass Transfer, Vol.18, pp. 719-730.

23. Goldstein, R. J., and Franchett, M. E., 1988, “Heat Transfer From a Flat Surface to an Oblique Impinging Jet,” Journal of Heat Transfer, Vol. 110, pp. 84-90.

24. Goldstein, R. J., Sobolik, K. A., and Seol, W. S., 1990, “Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface,” Journal of Heat Transfer, Vol. 112, pp. 608-611.

25. Garimella, S. V., and Rice, R. A., 1995, “Confined and Submerged Liquid Jet Impingement Heat Transfer,” Journal of Heat Transfer, Vol. 117, pp. 871-877.

26. Hong, Y. J., and Hsieh, S. S., 1993, “Heat Transfer and Friction Factor Measurements in Ducts With Staggered and In-Line Ribs,” Journal of Heat Transfer, Vol. 115, pp. 58-65.

27. Hsieh, S. S., and Hong, Y. J., 1995, “Heat transfer Coefficients in an Orthogonally Rotating Duct With Turbulators,” Journal of Heat Transfer, Vol. 117, pp. 69-78.

28. Huang Y., Ekkad S. V., Han J. C., 1998, “Detailed Heat Transfer Distributiona under an Array of Orthogonal Impinging Jets,” Journal of Thermophysics and Heat Transfer, Vol.12, pp.73-78.

29. Hsieh, S. S., Huang J. T., and Liu, C. F., 1999, “Local Heat Transfer in a Rotating Square Channel With Jet Impingement,” Journal of Heat Transfer, Vol. 121, pp. 811-818.

30. Hwang J. J. and Chang B. Y., 2000, “Effect of Outflow Orientation on Heat Transfer and Pressure Drop in a Triangular Duct With an Array of Tangential Jets, Journal of Heat Transfer, Vol.122, pp. 669-678.

31. Hwang J. J., and Cheng C. S., 2001, “Impingement Cooling in triangular ducts using an array of side-entry wall jets,” International Journal of Heat and Mass Transfer, Vol.44 pp. 1053-1063.

32. Ichimiya, K., and Hosaka, N., 1992, “Experimental Study of Heat Transfer Characteristics due to Confined Impinging Two-Dimensional Jets,” Experimental Thermal and Fluid Science, Vol. 5, pp. 803-807.

33. Jambunathan, K., Lai, E., Moss, M. A., and Button, B. L., 1992, “A Review of Heat Transfer data for Single Circular Jet Impingement,” International Journal of Heat and Fluid Flow, Vol. 13, pp. 106-115.

34. Lytle, D., and Webb, B. W., 1994, “Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 1687-1697.

35. Lin, Z. H., Chou, Y. J., and Hung, Y. H., 1997, “Heat Transfer Behaviors of a Confined Slot Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 40, pp. 1095-1107.

36. Mattern, C., and Hennecke, D. K., 1996, “The Influence of Rotation on Impingement Cooling,” International Gas Turbine and Aeroengine Congress & Exhibition Birmingham, UK-June 10-13.

37. Martin, H., 1997, “Heat and Mass Transfer Between Impinging Gas Jet and Solid Surface,” Advances in Heat Transfer, Vol. 13, pp. 1-60.

38. Pamadi, B. N., and Belov, I. A., 1980, “A Note on the Heat Transfer Characteristics of Circular Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 23, pp. 783-787.

39. Popiel, C. O., and Trass, O., 1991, “Visualization of a Free and Impinging Round Jet,” Experimental Thermal and Fluid Science, Vol. 4, pp. 253-264.

40. Parson, J. A., Han, J. C., 1998, ”Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target walls and Radially Outward Crossflow,” International Journal of Heat and Mass Transfer, Vol.41, pp. 2059-2071.

41. Parsons, J. A., Han, J. C., and Lee, C. P., 1998, “Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Radially Outward Crossflow,” Journal of Turbomachinery, Vol. 120, pp. 79-85.

42. Sparrow, E. M., and Wong, T. C., 1975, “Impingement Transfer Coefficients Due to Initially Laminar Slot Jets,” International Journal of Heat and Mass Transfer, Vol. 18, pp. 597-605.

43. Shadlesky, P. S., 1982, “Stagnation Point Heat Transfer for Jet Impingement to a Plane Surface,” AIAA Journal, Vol. 21, pp. 1214-1215.

44. Stevens, J., and Webb, B. W., 1991, “Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet,” Journal of Heat Transfer, Vol. 113, pp. 71-78.

45. San, J. Y., Huang, C. H., and Shu, M. H., 1997, “Impingement Cooling of a Congined Circular Air Jet,” International Journal of Heat and Mass Transfer, Vol.40, pp. 1355-1364.

46. Tabakoff, W., and Clevenger, W., 1972, “Gas Turbine Blade Heat Transfer Augmentation by Impingement of Air Jets Having Various Configurations,” Journal of Engineering for Power, Vol. 94, pp. 51-60.

47. Vader. D. T., Incropera, F. P., and Viskanta, R., 1991, “Local Convective Heat Transfer From a Heated Surface to an Impinging, Planar Jet of Water,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 611-623.
48. Womac, D. J., Ramadhyani, S., and Incropera, F. P., 1993, “Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets,” Journal of Heat Transfer, Vol. 115, pp. 106-115.

49. Zumbrunnen, D. A., Incropera, F. P., and Viskanta, R., 1989, “Convective Heat Transfer Distributions on a Plate Cooled by Planar Water Jets,” Journal of Heat Transfer, Vol. 111, pp. 889-896.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code