Responsive image
博碩士論文 etd-0723102-140227 詳細資訊
Title page for etd-0723102-140227
論文名稱
Title
LDV輔助雙管池沸騰熱傳動態量測與熱傳機制模擬
LDV Assisted Bubble Dynamic Parameter Measurements From Two Enhanced Tubes Boiling in Saturated R-134a
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-03
繳交日期
Date of Submission
2002-07-23
關鍵字
Keywords
雷射、池沸騰、動態量測
Dynamic Parameter Measurement, LDV, pool boiling
統計
Statistics
本論文已被瀏覽 5695 次,被下載 2634
The thesis/dissertation has been browsed 5695 times, has been downloaded 2634 times.
中文摘要
摘要
以池沸騰形式之熱傳現象在現今之工業的應用上可說是相當的廣泛,然而要一般化及準確的預測其熱傳係數卻是相當的不容易,主要的原因是池沸騰之核化沸騰(nucleate boiling)熱傳現象相當複雜,且其熱傳係數會隨著加熱表面之表面情況、幾何形狀大小、材料、排列方式及工作液體之不同而有所變化。而在這些不同的加熱表面下,沸騰時氣泡脫離半徑(departure diameter)、頻率(frequency)、速度(velocity)及加熱表面之有效核蕊密度(active nucleation site density)等參數(bubble dynamics data)會有所不同,因此會造成不同之熱傳效果。為了在不增加熱傳面積前題提升熱傳效率,將對上述所提影響核化沸騰之參數進行更深入的探討。

本研究以實驗方式進行,工作液體為R-134a,測試管為平滑管予以電漿塗佈銅(plasma spraying)來改變加熱表面之材料及表面情況。分析測試管在垂直排列情況對核化沸騰熱傳之影響;並利用高速之攝影設備拍攝與配合LDV量測,了解在水平兩管垂直排列之情況下氣泡生成之情形,以期瞭解沸騰熱傳機制。依據實驗結果,可尋求出不同狀況下的沸騰曲線,並得到上下測試管熱傳係數的相互影響結果。並在加熱量與熱傳係數關係建立一經驗公式。

研究的目標是希望能夠找出熱傳效果最好之排列方式與截距,以提供設計高性能滿溢式(flooded type)冰水機之參考;並對核化沸騰之熱傳現象有全盤且更深入之了解,以建立完整之學理基礎,提供學術界作為參考。
Abstract
Abstract
Pool boiling process is frequently encountered in a number of engineering applications. It is difficult to exactly predict the heat transfer coefficient. This is because the boiling phenomenon is rather complex and influenced by many factors, such as surface condition, heater size, geometry, material, arrangement of heated rods, and refrigerants, etc. The key boiling parameters (bubble dynamics data) such as bubble departure diameter, frequency, velocity and nucleation site density will be varied in such different heated rod pitches resulting in the different effect of heat transfer. Furthermore, more fundamental of the physical phenomenon can be obtained.
Pool boiling heat transfer of R-134a is investigated experimentally on twin tube arrangement. The tube pitch is 1.65 and 2.5. The surface condition was prepared with plasma spray coating. In addition, using the high-speed digital camera and LDV, the bubble diameter and dynamics of R-134a were measured while growing. The boiling curves in different twin-tube pitches were drawn and the influence of bubble velocity on heat transfer coefficients was also examined. Finally, to broaden our basic understanding of different arrangement of heated rods and heat transfer mechanisms, thermal design data of a flooded type evaporator of high performance as well as more and further physical insight of the above-stated nucleate boiling heat transfer can be acquired. The results would hopefully be helpful not only for the academia but also for the industry.
目次 Table of Contents
目錄 i
圖目錄 iv
表目錄 v
符號說明 vi
中文摘要 ix
英文摘要 x

第一章 緒論 1
1-1 前言 1
1-2 背景與目的 1
1-3 文獻回顧 4
1-4 研究範圍 9

第二章 實驗系統設備 11
2-1 加熱系統 11
2-2 測試容器 11
2-3 LDV系統 12
2-4 凝結器 13

第三章 實驗方法及步驟 20
3-1 實驗方法 20
3-1-1 測試管製作 20
3-1-2 控制測試管之熱通量 20
3-1-3 固定系統之飽和狀態 20
3-1-4 SEM觀測 21
3-1-5 AFM觀測 21
3-1-6 LDV量測與照相 22
3-2 實驗步驟 22
3-2-1 清洗 22
3-2-2 測漏 23
3-2-3 LDV系統之校正 23
3-2-4 進行實驗 23
3-2-5 數據處理 24

第四章 理論分析與數據處理 25

第五章 誤差分析 28

第六章 結果與討論 30
6-1 沸騰曲線與磁滯現象 30
6-2 熱傳效率 32
6-3 測試管表面特徵觀測與量測 32
6-4 氣泡成長與上升速度 33
6-5 熱傳係數 35

第七章 結論與建議 50
7-1 結論 50
7-2 建議 51

參考文獻 53

附錄A 61

圖 目 錄
頁次
圖2-1 測試加熱管之截面示意圖 15
圖2-2 測試容器示意圖 16
圖2-3 測試設備溫度量測點分佈圖 17
圖2-4 拍攝示意圖 18
圖2-5 垂直雙管之LDV量測位置圖 19
圖6-1 沸騰曲線圖 38
圖6-2 熱傳係數圖 39
圖6-3 AFM觀測結果圖 40
圖6-4 SEM觀測結果圖 41
圖6-5 汽泡速度與高度關係圖 42
圖6-6 汽泡頻率與熱通量關係圖 43
圖6-7 汽泡直徑與熱通量關係圖 44
圖6-8 上下測試管熱傳係數比值與熱通量關係圖 45
圖6-9 上方和單測試管熱傳係數比值與熱通量關係圖 46
圖6-10 塗佈銅管在R-134a的汽泡影像圖 47
圖6-11 塗佈銅管在R-134a的汽泡影像圖(續) 48
圖6-12 塗佈銅管在R-134a的汽泡影像圖(續) 49

表 目 錄

頁次
表5-1 參數及變數誤差值 29
表6-1 冷媒性質 36
表6-2 測試管表面性質測量 37

參考文獻 References
參考文獻
1.Ayub, Z. H., and Bergles, A. E., 1987, “Pool Boiling from GEWA Surfaces in Water and R-113,” Warme und Stoffubertragung, Vol. 21, pp. 209-219.

2.Ammerman, C. N. and You, S. M. and Hang, Y. S. 1996,“Identification of Pool Boiling Heat Transfer Mechanisms From a Wire Immersed in Saturated FC-72 Using a Single-Photo/LDA Method,” Journal of Heat Transfer, Vol. 118,pp. 117-123.

3.Ammerman, C. N. and You, S. M. , 1997, “Consecutive-Photo Method to Measure Vapor Volume Flow Rate During Boiling From a Wire Immersed in Saturated Liquid,” HTD-Vol. 353, Proceedings of the ASME Heat Transfer Division Volume 3.

4.Afgan, N. H., Jovic, L. A., Kovalev, S. A. and Lenykov, V. A., 1985, "Boiling Heat Transfer from Surfaces with Porous Layers," International Journal of Heat and Mass Transfer, Vol.28, pp.415-422.

5.Ayub, Z. H., and Bergles, A. E., 1988, “Pool Boiling Enhancement of a Modified GEWA-T Surface in Water,” ASME Journal of Heat Transfer, Vol. 110,pp. 266-268.

6.Alicia, H. and Mudawar I., 1999“Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surface” International Journal of Heat and Mass Transfer, Vol. 42,pp. 1665-1688.

7.Barthau, G., 1992, “Active Nucleation Site Density and Pool Boiling Heat Transfer-An Experimental Study,” International Journal of Heat and Mass Transfer, Vol. 35, pp. 271-278.

8.Bergez, 1995, "Nucleate Pool Boiling Heat Transfer of Pure Liquids at Low to Moderate Heat Fluxes," International Journal of Heat and Mass Transfer, Vol.38, pp.1799-1811.

9.Browne, M. W. and Bansal, P. K. , 1999 “Heat Transfer Characteristics of Boiling Phenomenon in Flooded Refrigerant Evaporators,” Applied Thermal Engineering 19, pp.595-624

10.Brian, K. Mori, W. and Douglas B., 2001“Bubble Departure from Cavities” International Journal of Heat and Mass transfer, Vol.44,pp. 771-783.

11.Chang, J. Y. and You, S. M., 1997, “Enhanced Boiling Heat Transfer From Micro-Porous Cylindrical Surfaces in Saturated FC-87 and R-123”, Journal of Heat Transfer, Vol. 119, pp. 319-325.

12.Chang, J. Y. and You, S. M. 1996, “Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72,” Journal of Heat Transfer, Vol. 118, pp. 937-943.

13.Collier, J. G. and Thome, J. R., 1994, "Convection Boiling and Condensation," Third Edition. Oxford University Press. New York.Chapter4, pp. 143-148.

14.Cornwell, K. and Duffin, N. W. and Schuller, R. B. , 1980,“ An Experimental Study of the Effects of Fluid Flow on Boiling Within a Kettle Reboiler Tube Bundle,” ASME Paper No. 80-HT-45.

15.Cornwell, K. and Houston, S. D., 1994,“Nucleate Pool Boiling on Horizontal Tubes: a Convection-Based Correlation,” Int, J, Heat Mass Transfer, Vol. 37, pp. 303-309

16.Chan, A. M. C., and Shoukri, M., 1987, “Boiling Characteristics of Small Multitube Bundles,” ASME Journal of Heat Transfer, Vol. 109, pp.753-760.

17.Clift, R. and Grace, J. R. and Weber, M. E. 1978 “Bubbles, Drops, and Particles” San Diego, Calif. : Academic Press.

18.Carey, V. P. c1992. “Liquid-Vapor Phase-Change Phenomena” Washington, D.C. :Hemisphere Pub. Corp.

19.Chien, L. H., Ralph L. W. ,1998 ”Measurement of Bubble Dynamics on an Enhanced Boiling Surface” Experimental Thermal and Fluid Science, vol.16,pp. 177-186.

20.Chun, M. H. and Kan,M. G. 1998, “ Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer,” Journal of Heat Transfer, Vol. 120, pp. 468-476.

21.Cornwell, K. , 1990, “The Influence of Bubbly Flow on Boiling From a Tube in a Bundle”, Int.J. Heat Mass Transfer, Vol. 33, No. 12, pp.2579-2584.

22.Fujita, Y., and Tsutsui, M., 1994, "Heat Transfer in Nucleate Pool Boiling of Binary Mixtures," International Journal of Heat and Mass Transfer, Vol.37,Suppl. 1, pp.291-302.

23.Fujita, Y., Ohta, H., Hidaka, S. and Nishikawa, k.,1986, “ Nucleate Boiling Heat Transfer on Horizontal Tubes,” Proceedings of 8th Int. Heat Transfer Conf., San Francisco, Vol. 5, PP. 2131-2136.

24.Gupta, A. , Saini, J. S. and Varma, H. K. , 1995, “Boiling Heat Transfer in Small Horizontal Tube Bundles at Low Cross-Flow Velocities,” Int. J. Heat Mass Transfer, Vol. 38, No.4, pp.599-605.

25.Hahne, E. , Chen, Q. R. , Windisch, R. , 1991, “Pool Boiling Heat Transfer on Finned Tubes—An Experimental and Theoretical Study, ” International Journal of Heat Mass Transfer Vol.34 (8) , pp.2071-2079

26.Hsieh, S. S. and Weng, C. J. ,1997, “Nucleate Pool Boiling From Coated Surfaces in Saturated R-134a and R-407c,” International Journal of Heat and Mass Transfer, Vol.40. No. 3. pp. 519-532.

27.Hsieh, S. S. and Yang, T. Y. ,2001. “Nucleate Pool Boiling From Coated and Spirally Wrapped Tubes in Saturated R-134a and R-600a at Low and Moderate Heat Flux,” ASME Journal of Heat Transfer, Vol.123,pp. 257-270.

28.Hsieh, S. S. and Ke, C. G., 2002. “Bubble Dynamic Parameters Measurements on Plasma Coated Tubes in Saturated R-134a and R-600a,” To appear in ASME Journal of Heat Transfer, August 2002.

29.Hetsroni, G. and Zakin, J. L. and Lin, Z. and Mosyak, A. and Pancallo, E. A. and Rozenblit, R. 2001“The Effect of Surfactants on Bubble Growth, Wall Thermal Patterns and Heat Transfer in Pool Boiling” International Journal of Heat and Mass Transfer, Vol. 44,pp. 485-497.

30.Hohl, R. and Blum, J. and Buchholz, M. and Luttich, T. and Auracher, H. and Marquardt, W. 2001“Model-Based Experimental Analysis of Pool Boiling Heat Transfer with Controlled Wall Temperature Transient” International Journal of Heat and Mass Transfer, Vol. 44,pp. 2225-2238.

31.Ivey, H. J., 1967, “Relationships Between Bubble Frequency , Departure Diameter and Rise Velocity in Nucleate Boiling,” Int, J. Heat Mass Transfer, Vol. 10, pp. 1023-1040

32.Liu, Z. W. and Lin, W. W. and Lee, D. J. , 2001“Pool Boiling of FC-72 and HFE-7100” ASME Journal of Heat Transfer, Vol.123,pp. 399-411.

33.Mcfadden, P. W. and Grassmann, P. , 1962 “The Relation Between Bubble Frequency and Diameter During Nucleate Pool Boiling,” Int. J. Heat Mass Transfer. Vol. 5, pp.169-173

34.Marto, P. J., and Lepere, V. J.,1982, “Pool Boiling Heat Transfer from Enhanced Surfaces to Dielectric Fluids, ” ASME Journal of Heat Transfer, Vol. 104, pp.292-299.

35.Marto, P. J., and Hernandez, B.,1983, “Nucleate Pool Boiling Characteristics of a GEWA-T Surface in Freon-113,” ALCHE Symp. Series, Vol. 79, No. 225, pp.1-10.

36.Marto, P. J. and Anderson, C. L. 1992, “Nucleate Boiling Characteristics of R-113 in a Small Tube Bundle,” ASME Journal of Heat Transfer, Vol. 114,pp.433-425.

37.Marto, P. J. , Memory, S. B. and Chilman, S. V. and 1994, “ Nucleate Pool Boiling of a TURBO-B Bundle in R-113,” International Journal of Heat Transfer Vol. 116, pp. 670-678.

38.Mudde, R. F and Groen, J. S. and Van Den Akker, H. E. A. , 1997“Liquid Velocity Field in a Bubble Column:LDA Experiments” Chemical Engineering Science, Vol.52,pp. 4217-4224.

39.Mudde, R. F and Groen, J. S. and Van Den Akker, H. E. A. , 1998, “Application of LDA to Bubbly Flows,” Nuclear Engineering and Design 184 ,pp. 329-338

40.O’Connor, J. P. , You, S. M. , Hong, Y. S. and Haji-Sheikh, H. E. A. , 1993 ,“Bubble Size, Velocity, and Frequency From a Wire Boiling in Saturated R-113,” HTD-Vol. 262, Phase Change Heat Transfer.

41.Paul, D. D., and Abdel-Khalik, S. I., 1983, “A Statistical Analysis of Saturated Nucleate Boiling Along a Heated Wire,” International Journal of Heat and Mass Transfer, Vol. 26, pp. 509-519.

42.Stephan, K. , and Mitrovic, J. , 1981, “Heat Transfer in Natural Convection Boiling on Refrigerant and Refrigerant-Oil Mixtures in Bundles of T-shaped Finned Tubes,” ASME HTD-Vol. 18, pp. 131-146.

43.Sokol, P. , Blein, P. , Gorenflo, D. , Rott, W. , and Schomann, H. , 1990, “Pool Boiling Heat Transfer From Plain and Finned Tubes to Propane and Propylene,” IHTC-1990, PP. 75-80.

44.Stephan, K. and Abdelsalam, M. , 1980, "Heat Transfer Correlations for Natural Convection Boiling," International Journal of Heat and Mass Transfer, Vol.23, pp.73-87.

45.Shi, M. H. , Ma, J. and Wang, B. X. , 1993, “Analysis on Hysteresis in Nucleate Pool Boiling Heat Transfer,” International Journal of Heat and Mass Transfer, Vol. 36, No. 18, pp. 509-519.

46.Shen, J. , Spindler, K. and Hahne, E. 1999“Pool Boiling Heat Transfer of Refrigerant Mixtures R32/R125” Int. Comm. Heat Mass Transfer, Vol. 26, No.8,pp. 1091-1102.

47.Tong, W. , Bar-Cohen, A., and Simon, T. W. ,1990, “Thermal Transport Mechanisms in Nucleate Pool Boiling of Highly-Wetting Liquids,” presented at the 1990 International Heat Conference, Paper No. 1-BO-05.

48.Webb, R. L. , and Pais, C. , 1992, “Nucleate Boiling Data for Five Refrigerants on Plain, Integral-Fin, and Enhanced Tube Geometries,” Int. J. Heat Transfer, Vol. 35, pp. 1893-1904.

49.Wallner, R. , 1974, “Heat Transfer in Flooded Shell and Tube Evaporators,” Proceedings 5th Int. Heat Transfer Conf., Tokyo, Vol. 5, pp. 214-217.

50.Wasekar, V. M. and Manglik, R. M. , 2000“Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant”, ASME Journal of Heat Transfer, Vol.122,pp. 708-715.

51.Yilmaz, S., and Westwater, J. W. , 1981, “Effect of Commercially Enhanced Surfaces on the Boiling Heat Transfer Curve”, ASME HTD-Vol. 18, pp. 73-91.

52.Ying, H. , Masahiro, S. , Shigeo, M. , 2001, “Numerical Study of High Heat Flux Pool Boiling Heat Transfer”, International Journal of Heat and Mass Transfer, Vol.44, pp. 2357-2373.

53.Zuber, N., 1963, "Nucleate Boiling-the Region of Isolated Bubbles-Similarity with Natural Convection," International Journal of Heat and Mass Transfer, Vol.6, pp.53-65.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code