Responsive image
博碩士論文 etd-0723103-232739 詳細資訊
Title page for etd-0723103-232739
論文名稱
Title
管材之成形極限研究
Study on Forming Limit of Tubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-27
繳交日期
Date of Submission
2003-07-23
關鍵字
Keywords
塑性不安定準則、成形極限圖、管材液壓成形
Forming limit diagram, Plastic instability criterion, Tube hydro forming
統計
Statistics
本論文已被瀏覽 5678 次,被下載 7911
The thesis/dissertation has been browsed 5678 times, has been downloaded 7911 times.
中文摘要
摘 要

本文針對退火處理過之AA6063-T5鋁合金管材,利用萬能試驗機台與管材液壓成形實驗機台,進行板金成形性試驗與液壓鼓脹成形試驗。藉由電化學網格蝕刻與影像量測處理系統,建立材料之成形極限圖(Forming Limit Diagram, FLD)。另外,以Hill的新降伏準則塑性不安定判別式預測金屬材料之成形極限曲線(Forming Limit Curve, FLC),將理論所預測之成形極限圖與實驗所量測之成形極限圖互相比較驗證。最後,比較板材與管材之成形極限圖可知,兩者之成形極限相當一致。而Hill新降伏準則所預測之成形極限曲線與實驗值比較,結果顯示相當吻合,所以可作為板金或管材成形極限曲線之判別式。


Abstract
ABSTRACT

The objective of this study is to establish the Forming Limit Diagram (FLD) of tubes. An experimental system of tube hydroforming, the electrical chemical etching method and the image process system are used to carry out the sheet metal forming test and the hydraulic bulge-forming test of annealed aluminum alloy tubes. Furthermore, Hill’s new yield criterion is also used to predict the Forming Limit Curves of sheets. The predicted forming limit diagrams are compared with experimental data. The forming limit diagrams of tubes are coincident with those of sheets. Also, the predicted forming limit curves by Hill’s new yield criterion agree quite well with those by experiments. Therefore, Hill’s new yield criterion can be used to establish the forming limit curves of sheets or tubes.


目次 Table of Contents
目 錄

中文論文摘要 Ⅰ
英文論文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅵ
圖目錄 Ⅶ
符號說明 Ⅹ
第一章 緒論 1
1-1 前言 1
1-2 製程簡介 2
1-2-1 管材液壓鼓脹成形技術 2
1-2-2 板金沖壓成形技術 3
1-3 文獻回顧 4
1-3-1 管材液壓成形極限之相關文獻 4
1-3-2 板金沖壓成形極限之相關文獻 6
1-4 本文研究範疇 8
1-4-1 本研究之目的 8
1-4-2 本論文之架構 8
第二章 理論分析 12
2-1 基本假設 12
2-2 座標系定義 13
2-3 塑性力學準則 13
2-3-1 基本塑性力學方程式 13
2-3-2 塑性不安定準則 14
第三章 材料拉伸試驗 22
3-1 目的 22
3-2 強度係數與應變硬化指數之測定 22
3-3 正向異向性之測定 23
3-4 材料拉伸試驗結果 25
3-4-1 強度係數與應變硬化指數 25
3-4-2 正向異向性 26
第四章 管材成形極限圖之建立 33
4-1 成形極限圖簡介 33
4-2 成形極限試驗之目的 34
4-3 實驗管材與試片之準備 34
4-3-1 管材之退火處理 35
4-3-2 管材圓形試片之截取 35
4-3-3 電化學網格蝕刻 36
4-4 板金成形性試驗 36
4-5 液壓鼓脹成形性試驗 37
4-5-1 實驗設備 37
4-5-2 實驗步驟 38
4-6 網格影像量測處理 38
4-7 管材成形路徑之有限元素模擬 40
4-7-1 DEFORMTM簡介 41
4-7-2 DEFORMTM之分析模式 42
第五章 結果與討論 58
5-1 板金成形性試驗結果 58
5-2 液壓鼓脹成形性試驗結果 58
5-3 應用塑性不安定準則預測成形極限曲線 59
5-3-1 以塑性不安定準則預測成形極限曲線 59
5-3-2 材料性質參數對塑性不安定準則之影響 60
5-4 成形路徑模擬結果 62
5-4-1 板金成形性路徑模擬 62
5-4-2 液壓鼓脹成形路徑模擬 64
第六章 結論 86
6-1 研究成果總結 86
6-2 今後研究課題 87
參考文獻 89
附錄 等效應變增量與應變增量關係式之推導 94
自述 98
參考文獻 References
參考文獻

[1] 邱先拿, “管材液壓成形技術之應用狀況與發展動向,” 機械月刊, Vol.26, No.10, pp.369-383 (2000).
[2] M. Ahmetoglu and T. Altan, “Tube hydroforming: state-of-the-art and future trends,” J. Mater. Process. Technol., Vol.98, pp.25-33 (2000).
[3] D.M. Woo, “The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process,” Int. J. Mech. Sci., Vol.6, pp.303-317 (1964).
[4] D.M. Woo and A.C. Lua, “Plastic deformation of ansiotropic tubes in hydraulic bulging,” J. Mater. Process. Technol. Vol.100, pp.421-425 (1978).
[5] S. Fuchizawa, “Influence of plastic anisotropy on deformation of thin-walled tubes in bulge forming,” Advanced Technology of plasticity, 2nd ICTP, Stuttgart, Vol.2, pp.727 (1987).
[6] C. Hartl, “Theoretical Fundamentals of Hydroforming,” International Conference on Hydroforming, Fellbach/Stuttgart (1999).
[7] N. Asbafi, “Theoretical and Experimental Analysis of Stroke-controlled Tube Hydroforming,” Material Science and Engineering, A279, pp.95-110 (2000).
[8] T. Sokolowski, K. Gerke, M. Ahmetoglu and T. Altan, “Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes,” Journal of Material Processing Technology, Vol.98, pp.34-40 (2000).
[9] S. Fuchizawa and M. Narazaki, “Bulge test for determining stress-strain characteristics of thin tubes,” Advanced Technology of plasticity, 4th ICTP, Beijing, China, Vol.1, pp.488 (1993).
[10] S. Fuchizawa, M. Narazaki and A. Shirayori, “Bulge forming of aluminum alloy tubes by internal pressure and axial compression,” Advanced Technology of plasticity, 5th ICTP, Columbus, Ohio, USA, Vol.1, pp.497-500 (1996).
[11] K. Yamada, H. Mizukoshi and H. Okada, “Mechanical Properties of Aluminum Alloy Tubes for Hydroforming-Second report: estimation of anisotropic parameters-,” The Proceedings of the 51st Japanese Joint Conference for the Technology of Plasticity, pp.349-350 (2000).
[12] J.K. Banerjee, “Limiting Deformations in Bulge Forming of Thin Cylinders of Fixed Length,” Int. J. Mech. Sci., Vol.17, pp.659 (1975).
[13] S. Fuchizawa, H. Kondo, A. Shirayori and M. Narazaki, “Forming Limit of Aluminum Tube Subjected to Internal Pressure and Axial Load,” The Proceedings of the 53rd Japanese Joint Conference for the Technology of plasticity, pp.219-220 (2002).
[14] T. Kuwabara, K. Yoshida, K. Narihara and S. Takahashi, “Forming Limit of 5000-Type Aluminum Alloy Tubes in Linear and Bi-Linear Strain Paths,” The Proceedings of the 2002 Japanese Spring Conference for the Technology of plasticity, pp.255-256 (2002).
[15] K. Yamada, H. Mizukoshi and K. Okada, “Forming Limit of Aluminum Alloy Tubes for Hydro Forming Simulation,” The Proceedings of the 2002 Japanese Spring Conference for the Technology of plasticity, pp.251-252 (2002).
[16] F. Klaas, “Innenhochdruckumformen von Automobiltrilen,” Berlin: Tagungsband Innenhochdruck- und Thixoformen von Stahl und Aluminium (1998).
[17] G. Nefussi and A. Combescure, “Coupled buckling and plastic instability for tube hydroforming,” Int. J. Mech. Sci., Vol.44, pp.899-914 (2002).
[18] F. Dohmann and Ch. Hartl, “Hydroforming-a method to manufacture light-weight parts,” Journal of Material Processing Technology, Vol.60, pp.669-676 (1996).
[19] S.P. Keeler and W.A. Backofen, “Plastic Instability and Fracture inSheets Stretched Over Rigid Punches,” Trans. ASM, Vol.56, pp.25 (1963).
[20] G.M. Goodwin, “Application of Strain Analysis on Sheet Metal Forming Problems in The Press Shop,” SAE Paper, No.680093, (1968).
[21] H.W. Swift, “Plastic Instability under Plane Stress,” J. Mech. Phys. Solid, Vol.1, pp.1-18 (1952).
[22] R. Hill, “On Discontinuous Plastic States, with Special Reference of Localized Necking in Thin Sheets,” J. Mech. Phys. Solid, Vol.1, pp.19-30 (1952).
[23] R. Venter, W. Johnson and M.C. deMalherbe, “The Limit Strains of Inhomogeneous Sheet Metal in Biaxial Tension,” Int. J. Mech. Sci., Vol. 13, pp.299-308 (1971).
[24] D. Banabic, “Limit Strains in the Sheet Metals by Using the New Hill’s Yield Criterion,” Journal of Materials Processing Technology, Vol.92-93, pp.429-432 (1999).
[25] E. Marciniak and K. Kuczynski, “Limit Strains in the Processes of Stretch Forming Sheet Metal,” Int. J. Mech. Sci., Vol.9, pp.609 (1967).
[26] A.K. Ghosh, “Plastic Flow Properties in Relation to Localized Necking in Sheet,” Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis, pp.287-312 (1978).
[27] J.W. Hutchinson and K.W. Neale, “Sheet Necking-ⅡTime-Independent Behavior,” Ibid, pp.127-150 (1978).
[28] M.G. Cockcroft and D.J. Latham, “Ductility and Workability of Metals,” J. Inst. Metals, Vol.96, pp.33 (1968).
[29] D.M. Norris, J.E. Reaugh, B. Moran and D.F. Quinones, “A Plastic Strain Mean-Stress Criterion for Ductile Fracture,” J. Engng. Mater. Tech., Vol.100, pp.279-286 (1978).
[30] H. Takuda, K. Mori and N. Hatta, “The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals,” Journal of Materials Processing Technology, Vol.95, pp.116-121 (1999).
[31] H. Takuda, K. Mori, H. Fujimoto and N. Hatta, “Prediction of Forming Limit in Bore-expanding of Sheet Metals Using Ductile Fracture Criterion,” Journal of Materials Processing Technology, Vol.92-93, pp.433-438 (1999).
[32] K. Nakazima, T. Kikuma and K. Hasuka, “Study on the Formability of Steel Sheets,” Yawata Technical Report, No.264, pp.141-154 (1963).
[33] S.S. Hecker, “Simple Technique for Determining Forming Limit Curve,” SM1, pp.671-676 (1976).
[34] V. Hasek, “Untersuchung und Theoretische Beschreibung Wichtiger EinfluBgroBen auf das Grenzgormanderungsschaubild,” Institute of Metal Forming Report, University of Stuttgart, West Germany, pp.213-220 (1976).
[35] P. Picart and J.F. Michel, “Effects of Size and Texture on the Constitutive Behaviour for Very Small Components in Sheet Metal Forming.” Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.2, pp.921-926 (1999).
[36] 賴耿陽, 管材加工二次成形, 復漢出版社, pp.2 (2001).
[37] 蘇貴福、陳煌源、林宏仁編譯, 衝壓成形難易指南, 全華科技圖書股份有限公司 (1991).
[38] L. Zhao, R. Sowerby and M.P. Sklad, “A Theoretical and Experimental Investigation of Limit Strains in Sheet Metal Forming,” Int. J. Mech. Sci., Vol.38, pp.1307-1317 (1996).
[39] F.P. Beer and E.R. Johnston, Mechanics of materials, 2nd Edition, McGraw-Hill, Inc, pp.377-379 (1992).
[40] Standard Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products [Metric], Annual Book of ASTM Standards Section 3, Vol.03.01, pp.60-70.
[41] T. Sokolowski, K. Gerke, M. Koc, M. Ahmetoglu and T. Altan, “Evaluation of Tube Formability and Material Characteristics,” Report No.THF/ERC/NSM-98-R-025 (1998).
[42] J. Hiam and A. Lee, “Factors Influencing the Forming-Limit Curves of Sheet Steel,” Sheet Metal Industries, pp.631 (1978).
[43] 金重勳, 機械材料, 復文書局 (1994).
[44] 蔡錦文, 管材液壓鼓脹成形之實驗與模擬, 中山大學機電工程研究所碩士論文 (2002).
[45] 李榮顯、許光城, “數位影像處理在板金成形極限圖建立之應用,” 中國材料科學學會論文集, pp.467-471 (1989).
[46] 佘振華, 板金多道次成形之成形極限研究, 成功大學機械工程研究所碩士論文 (1989).
[47] A.S. Kornonen, “On the Theories of Sheet Metal Necking and Forming Limits,” J. Eng. Mater. Tech., Trans. of the ASME, Vol.100, pp.303-309 (1978).
[48] E.M. Mielnik, Metalworking Science and Engineering, International Edition, McGraw-Hill, Inc, pp.93 (1993).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code