Responsive image
博碩士論文 etd-0723104-182000 詳細資訊
Title page for etd-0723104-182000
論文名稱
Title
改良型選擇性耙式接收機於超寬頻通道之效能分析
Performance Analysis of Improved Selective-Rake on Ultra-Wideband Channels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-08
繳交日期
Date of Submission
2004-07-23
關鍵字
Keywords
小波轉換、選擇性耙式接收機、超寬頻、脈衝無線電
Selective-Rake, CLEAN Algorithm, Impulse Radio, Wavelet Transform, Ultra-Wideband
統計
Statistics
本論文已被瀏覽 5696 次,被下載 35
The thesis/dissertation has been browsed 5696 times, has been downloaded 35 times.
中文摘要
超寬頻(Ultra-Wideband, UWB)通訊技術於近年來受到廣泛的注意。本論文運用統計分佈方式描述超寬頻無線傳輸通道並探討其衰落現象,且針對不同形式的脈衝無線電訊號(Impulse Radio)進行特性分析,並於系統層面架構跳時展頻技術(Time-Hopping Spread Spectrum)為超寬頻通訊之傳輸模式。由於超寬頻通道具有密集性多重路徑特性,使得耙式接收機(Rake Receiver)面臨系統效能與設計複雜度之取捨議題,因此發展出選擇性耙式接收機(Selective-Rake)之概念。其主要構想為估測接收訊號在已知無線傳輸通道所遭受之干擾強度,進而決定耙式接收機之相關器個數(Fingers)。同時以最大可能性法則(Maximum Likelihood)估測多重路徑訊號的延遲時間,結合搜尋最佳訊號路徑的CLEAN演算法,而實現選擇性耙式接收機的架構。更進一步,本論文提出改良型選擇性耙式接收機,其利用小波轉換(Wavelet Transform)的多重解析特性處理接收訊號,讓雜訊由於快速變動(Rapid Fluctuation)而造成的訊號干擾因素得以濾除。並且利用CLEAN演算法所衍生的二階段搜尋方法(Two-Stage Search)來提高最佳路徑搜尋之正確性。經由實驗結果驗證,本論文提出之改良型選擇性耙式接收機可有效提升選擇性耙式接收機的效能。
Abstract
The Ultra-Wideband (UWB) communication technology has been extensively attended in recent years. In this thesis, we propose the improved selective-Rake receiver and analyze the performance on UWB channels. The UWB transmission channels are modeled with statistical methods and its fading characteristics are discussed. Different impulse radio properties for the UWB communication system are analyzed. The system performance and design complexity issues of selective-Rake receiver (SRake) are studied. Rake receiver has difficulties achieving desired system performance in the dense multipath environment. The main ideas of SRake receiver are to obtain the SNR level on known multipath channel and to determine the desired number of Rake fingers. Matched filters and maximum likelihood detectors are utilized in the implementation of the SRake to estimate the signal time delay. The CLEAN algorithm is then used in selecting the paths with relatively high energy. Furthermore, we also propose a noise cancellation scheme for performance improvement in the SRake receiver. In the noise cancellation scheme, the multiresolution property of wavelet transform is used for filtering the noise interference caused by the rapid fluctuation factor. In addition, a two-stage search is combined with the original CLEAN algorithm to increase the accuracy of path selection. From our simulation results on the UWB channels, the improved SRake receiver, with noise cancellation and two-stage search, indeed has high SRake output SNR and better path accuracy than the original SRake receiver.
目次 Table of Contents
第一章 導論………………………1
1.1 概觀超寬頻技術………………1
1.2 研究動機………………………5
1.3 全文結構………………………5
第二章 超寬頻傳輸通道模型……6
2.1 大區域範圍衰落特性…………7
2.2 小區域範圍衰落統計…………11
2.3 超寬頻通道分析………………15
第三章 脈衝信號波形…………………19
3.1 超寬頻系統頻寬定義………………19
3.2 單調訊號形式與特性………………19
3.3 單調訊號族群與特性………………23
3.4 系統天線對單調訊號之影響………26
3.5 脈衝無線電調變技術………………27
3.5.1 脈衝序列…………………………27
3.5.2 時間位移…………………………27
3.5.3 跳時脈波位置調變………………28
3.5.4 接收跳時脈波位置調變訊號……30
第四章 選擇性耙式接收機………………33
4.1 選擇性耙式接收機之主要概念………33
4.2 耙式接收機通用架構…………………34
4.3 選擇性耙式接收機效能分析…………38
4.4 選擇性耙式接收機之實現……………43
4.4.1 最佳多重路徑偵測器………………43
4.4.2 CLEAN演算法…………………………46
第五章 選擇性耙式接收機效能之改進方法…51
5.1 短時間傅立葉轉換…………………………51
5.2 小波轉換……………………………………54
5.3 濾波器組……………………………………57
5.3.1 分解分析…………………………………57
5.3.2 重建合成…………………………………58
5.3.3 設計濾波器組……………………………61
5.4 多重解析度…………………………………62
5.5 小波函數……………………………………66
5.6 運用小波轉換之特性濾除雜訊干擾………70
5.7 二階段搜尋方法……………………………75
第六章 改良型選擇性耙式接收機之效能分析………79
6.1 改良型選擇性耙式接收機架構……………………79
6.2 輸入訊雜比與接收機相關器個數及搜尋路徑正確性之關係………80
6.3 改良型選擇性耙式接收機之模擬結果分析………86
第七章 結論與建議………………………………………91
附錄A………………………………………………………93
附錄B………………………………………………………96
附錄C………………………………………………………98
參考文獻……………………………………………………99
中英對照……………………………………………………103
參考文獻 References
[1] Jeff Foerster, Evan Green, Srinivasa Somayazulu, and David Leeper, "Ultra-Wideband Technology for Short- or Medium-Range Wireless Communications," Inter Technology Journal Q2, 2001.
[2] Matthew L. Welborn, "System Considerations for Ultra-Wideband Wireless Networks," IEEE Radio and Wireless Conference, pp.5 - 8, Aug. 2001.
[3] Moe Z. Win and Robert A. Scholtz, "Characterization of Ultra-Wide Bandwidth Wireless Indoor Channels: A Communication-Theoretic View," IEEE Journal on Selected Areas in Communications, vol. 20, pp. 1613 - 1627, Dec. 2002.
[4] Dajana Cassioli, Moe Z. Win, and Andreas F. Molisch, "A Statistical Model for the UWB Indoor Channel," IEEE Vehicular Technology Conference, vol. 2, pp. 1159 - 1163, May 2001.
[5] Dajana Cassioli, Moe Z. Win, and Andreas F. Molisch, "The Ultra-Wide Bandwidth Indoor Channel: From Statistical Model to Simulations," IEEE Journal on Selected Areas in Communications, vol. 20, pp. 1247 - 1257, Aug. 2002.
[6] Bernard Sklar, "Rayleigh Fading Channels in Mobile Digital Communication Systems, PartⅠ: Characterization," IEEE Communications Magazine, vol. 35, pp. 90 - 100, Jul. 1997.
[7] Bernard Sklar, "Rayleigh Fading Channels in Mobile Digital Communication Systems, PartⅡ: Mitigation," IEEE Communications Magazine, vol. 35, pp. 102 - 109, Jul. 1997.
[8] M. Nakagami, "The m-distribution - A General Formula of Intensity Distribution of Rapid Fading," Statistical Method in Radio Wave Propagation, W.C. Hoffman, Ed., pp. 3 - 36, Pergamon, Oxford, England, 1960.
[9] Norman C. Beaulieu and Christine Cheng, "An Efficient Procedure for Nakagami-m Fading Simulation," IEEE Global Telecommunications Conference, vol. 6, pp. 3336 - 3342, Nov. 2001.
[10] Tsan-Ming Wu and Shiuan-Yuan Tzeng, "Sum-of-sinusoids-based Simulator for Nakagami-m Fading Channels," IEEE Vehicular Technology Conference, vol. 1, pp. 158 - 162, Oct. 2003.
[11] J. Reig and N. Cardona, "Nakagami-m Approximate Distribution of Sum of Two Nakagami-m Correlated Variables," Electronics Letters, vol. 36, pp. 978 - 980, May 2000.
[12] Steven M. Kay, Fundamentals of Statistical Signal Processing, VolumeⅠ: Estimation Theory, Prentice Hall, May 1993.
[13] Moe Z. Win and Robert A. Scholtz, "Impulse Radio: How It Works," IEEE Communications Letters, vol. 2, pp. 36 - 38, Feb. 1998.
[14] Xiaomin Chen and Sayfe Kiaei, "Monocycle Shapes for Ultra Wideband System," IEEE International Symposium on Circuits and Systems, vol. 1, pp. I-597 - I-600, May 2002.
[15] Matthew Welborn and John McCorkle, "The Importance of Fractional Bandwidth in Ultra-Wideband Pulse Design," IEEE International Conference on Communications, vol. 2, pp. 753 - 757, Apr. 2002.
[16] Michel Terre, Anton Hong, Gregoire Guibe, and Fabrice Legrand, "Major Characteristics of UWB Indoor Transmission for Simulation," IEEE Vehicular Technology Conference, vol. 1, pp. 19 - 23, Apr. 2003.
[17] Yongfu Huang, Xiangning Fan, Jiang Wang, and Guangguo Bi, "Analysis of the Energy Dynamic of UWB Signal in Multipath Environments," IEEE Vehicular Technology Conference, vol. 1, pp. 15 - 18, Apr. 2003.
[18] J. Zhang, T. D. Abhayapala, and R. A. Kennedy, "Performance of Ultra-Wideband Correlator Receiver Using Gaussian Monocycles," IEEE International Conference on Communications, vol. 3, pp. 2192 - 2196, May 2003.
[19] Robert A. Scholtz, "Multiple Access with Time-Hopping Impulse Modulation," Military Communications Conference, vol. 2, pp. 11 - 14, Apr. 1993
[20] Moe Z. Win and Robert A. Scholtz, "Ultra-Wide Bandwidth Time-Hopping Spread-Spectrum Impulse Radio for Wireless Multiple-Access Communications" IEEE Transactions on Communications, vol. 48, pp. 679 - 689, Apr. 2000.
[21] Fernando Ramirez-Mireles, "Signal Design for Ultra Wideband PPM Communications," Military Communications Conference, vol. 2, pp. 1085 - 1088, Oct. 2002.
[22] Theodore S. Rappaport, Wireless Communications Principles and Practice, 2nd ed., Prentice Hall, Dec. 2001.
[23] John G. Proakis, Digital Communications, 4th ed., McGraw-Hill, Aug. 2000.
[24] Moe Z. Win and Zoran A. Kostic, "Impact of Spreading Bandwidth on Rake Reception in Dense Multipath Channels," IEEE Communication Theory Mini-Conference, pp. 78 - 82, Jun. 1999.
[25] Moe Z. Win and Zoran A. Kostic, "Impact of Spreading Bandwidth on Rake Reception in Dense Multipath Channels," IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1794 - 1806, Oct. 1999.
[26] Moe Z. Win and Zoran A. Kostic, "Virtual Path Analysis of Selective Rake Receiver in Dense Multipath Channels," IEEE Communications Letters, vol. 3, pp. 308 - 310, Nov. 1999.
[27] Moe Z. Win, George Chrisikos, and Nelson R. Sollenberger, "Effects of Chip Rate on Selective Rake Combining," IEEE Communications Letters, vol. 4, pp. 233 - 235, Jul. 2000.
[28] Moe Z. Win, George Chrisikos, and Andreas F. Molisch, and Nelson R. Sollenberger, "Selective Rake Diversity in Multipath Fading with Arbitrary Power Delay Profile," IEEE Global Telecommunications Conference, vol. 2, pp. 960 - 964, Dec. 2000.
[29] Moe Z. Win and Jack H. Winters, "Analysis of Hybrid Selection/Maximal-Ratio Combining of Diversity Branches with Unequal SNR in Rayleigh Fading," IEEE Vehicular Technology Conference, vol. 1, pp. 215 - 220, May 1999.
[30] Moe Z. Win and Jack H. Winters, "Analysis of Hybrid Selection/Maximal-Ratio Combining in Rayleigh Fading," IEEE International Conference on Communications, vol. 1, pp. 6 - 10, Jun. 1999.
[31] Moe Z. Win and Jack H. Winters, "Analysis of Hybrid Selection/Maximal-Ratio Combining in Rayleigh Fading," IEEE Transactions on Communications, vol. 47, pp. 1773 - 1776, Dec. 1999.
[32] Moe Z. Win and Jack H. Winters, "Virtual Branch Analysis of Symbol Error Probability for Hybrid Selection/Maximal-Ratio Combining in Rayleigh Fading," IEEE Transactions on Communications, vol. 49, pp. 1926 - 1934, Nov. 2001.
[33] Philip A. Bello, "Characterization of Randomly Time-Variant Linear Channels," IEEE Transactions on Communications, vol. 11, pp. 360 - 393, Dec. 1963.
[34] Henry Stark and John W. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed., Prentice Hall, Jul. 2001.
[35] Peter J. Bickel and Kjell A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, 1st ed. Oakland, CA: Holden-Day, 1997.
[36] Moe Z. Win and Robert A. Scholtz, "Energy Capture vs. Correlator Resources in Ultra-Wide Bandwidth Indoor Wireless Communications Channels," Military Communications Conference, vol. 2, pp. 1277 - 1281, Nov. 1997.
[37] Moe Z. Win and Robert A. Scholtz, "On the Energy Capture of Ultrawide Bandwidth Signals in Dense Multipath Environments," IEEE Communications Letters, vol. 2, pp. 245 - 247, Sep. 1998.
[38] J. A. Hogbom, "Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines," Astronomy and Astrophysics Supplement, vol. 15, pp. 417 - 426, 1974.
[39] Steven M. Kay, Fundamentals of Statistical Signal Processing, VolumeⅡ: Detection Theory, Prentice Hall, Jan. 1998.
[40] J. H. T. Bates, W. R. Fright, and R. H. T. Bates, "Wiener filtering and Cleaning in a general image processing context," Monthly Notices Royal Astronomical Society, vol. 211, pp. 1 - 14, Nov. 1984.
[41] Rodney G. Vaughan and Neil L. Scott, "Super-Resolution of Pulsed Multipath Channels for Delay Spread Characterization," IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 781 - 785, Oct. 1996.
[42] R. Jean-Marc Cramer, Moe Z. Win, and Robert A. Scholtz, "Evaluation of the Multipath Characteristics of the Impulse Radio Channel," IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 864 - 868, Sep. 1998.
[43] Rodney G. Vaughan and Neil L. Scott, "Super-Resolution of Pulsed Multipath Channels for Delay Spread Characterization," IEEE Transactions on Communications, vol. 47, pp. 343 - 347, Mar. 1999.
[44] R. Jean-Marc Cramer, Robert A. Scholtz, and Moe Z. Win, "Evaluation of an Ultra-Wide-Band Propagation Channel," IEEE Transactions on Antennas and Propagation, vol. 50, pp. 561 - 570, May 2002.
[45] Scott M. Yano, "Investigating the Ultra-Wideband Indoor Wireless Channel," IEEE Vehicular Technology Conference, vol. 3, pp. 1200 - 1204, May 2002.
[46] John G. Proakis and Masoud Salehi, Communication Systems Engineering, Prentice Hall, Jan. 1994.
[47] Simon Haykin, Communication Systems, 3rd ed., John Wiley & Sons, Mar. 1994.
[48] Bernard Sklar, Digital Communications: Fundamentals and Applications, 2nd ed., Prentice Hall, Jan. 2001.
[49] Rodger E. Ziemer and William H. Tranter, Principles of Communications: Systems, Modulation, and Noise, 5th ed., John Wiley & Sons, Aug. 2001.
[50] Stephane G. Mallat, "A Theory for Multiresolution Signal Decomposition: the Wavelet Representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674 - 693, Jul. 1989.
[51] Martin Vetterli, Wavelets and Subband Coding, Prentice Hall, Apr. 1995.
[52] Stephane G. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, Sep. 1999.
[53] Ingrid Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, May 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.119.148
論文開放下載的時間是 校外不公開

Your IP address is 18.222.119.148
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code