Responsive image
博碩士論文 etd-0723108-125023 詳細資訊
Title page for etd-0723108-125023
論文名稱
Title
利用化學氣相沉積在鋁酸鋰基板上成長非極性氮化鎵
Growth of nonpolar GaN on γ–LiAlO2 substrates by chemical vapor deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-16
繳交日期
Date of Submission
2008-07-23
關鍵字
Keywords
氮化鎵、鋁酸鋰
LiAlO2, GaN, CVD
統計
Statistics
本論文已被瀏覽 5643 次,被下載 0
The thesis/dissertation has been browsed 5643 times, has been downloaded 0 times.
中文摘要
本文是以化學氣相沉積(chemical vapor deposition, CVD)法在(100)面γ相鋁酸鋰 (γ–LiAlO2 , LAO)基板上成長非極性(nonpolar) m-plane GaN薄膜。Metallic Gallium、NH3和N2分別作為Ga source、N source以及載送氣體(carrier gas),我們研究反應壓力、生長溫度、NH3/N2氣體流量和生長時間等實驗條件對GaN薄膜生長的影響。以X光繞射(XRD)和掃描式電子顯微鏡(SEM)研究GaN薄膜的生長方向及表面形貌。發現在反應壓力為200 torr、NH3/N2氣體流量為450/450sccm條件下,改變生長溫度(950°C ~ 1050°C)可以獲得c-plane、 c-混m-plane及單純m-plane的GaN薄膜。此外, m-plane GaN薄膜的品質會隨著生長時間(30分鐘~120分鐘)的增加有明顯的提升。
本文進一步利用原子力顯微鏡(AFM)、拉曼光譜(Raman)、陰極發光(CL)和穿透式電子顯微鏡(TEM)分析,研究m-plane GaN薄膜的表面形貌、薄膜應力、光學性質以及微觀結構。
Abstract
In this thesis, we investigated the growth of nonpolar GaN on (100) γ–LiAlO2 substrate by a simple chemical vapor deposition (CVD) process. Metallic gallium, NH3 and ultra-purity nitrogen were used as Ga, N sources and carrier gas. The X-ray diffraction and scanning electron microscopy were used to study the influence of growth conditions such as reaction pressure, growth temperature and deposition time on the GaN epilayer’s orientation and surface morphology. It’s found that pure c plane, c mixed m plane and pure m plane GaN epilayers can be grown on LiAlO2 substrates by the change of growth temperatures (950°C~1050°C) under 200 torr pressure and NH3/N2 (450/450sccm) gas flow. In addition, with longer deposition time (30min ~120min), nonpolar GaN epilayers show better crystal quality.
Furthermore, atomic force microscopy, Raman spectroscopy, cathodeluminescence, transmission electron microscopy were used to study the surface morphology, stress, optical properties and microstructure of the nonpolar GaN epilayers.
目次 Table of Contents
摘要 I
Abstract II
表 目錄 V
圖 目錄 VI
第一章 概論 1
1-1引言 1
1-2 γ-LiAlO2基板 4
1-3文獻回顧 7
1-4研究緣起及目的 8
第二章 量測系統概述 10
2-1 X光繞射分析儀(X-ray diffraction, XRD) 10
2-2掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 10
2-3陰極發光(Cathodoluminescence, CL) 10
2-4原子力顯微鏡(Atomic Force Microscope, AFM) 11
2-5光激發光譜(Photoluminescence spectroscopy, PL) 11
2-6拉曼光譜(Raman spectroscopy, Raman) 11
2-7穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 12
第三章 樣品成長與製備 13
3-1 化學氣相沉積(chemical vapor deposition, CVD) 13
3-2 實驗方法與步驟 14
3-2-1基板清洗 14
3-2-2 CVD生長 14
3-3 實驗製程參數 15
第四章 結果與討論 17
4-1生長溫度對GaN影響 17
4-1-1 X光繞射(XRD)分析 18
4-1-2掃描式電子顯微鏡(SEM)分析 20
4-1-3光激發光譜(PL)分析 22
4-2生長時間對GaN影響 23
4-2-1 X光繞射(XRD)分析 24
4-2-2掃描式電子顯微鏡(SEM)分析 25
4-2-3光激發光譜(PL)分析 27
4-3 m-plane GaN薄膜的性質分析 28
4-3-1原子力顯微鏡(AFM)分析 28
4-3-2拉曼光譜(Raman)分析 30
4-3-3陰極發光(CL)分析 31
4-3-4穿透式電子顯微鏡(TEM)分析 33
第五章 結論 37
參考文獻 38
附錄 41
參考文獻 References
[1] Yuji Uchida and Tsunemasa Taguchi, Opt. Eng. 44, 124003 (2005).
[2] S. Nakamura, Jap. J. Appl. Phys. 30, L1705 (1991).
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, Appl. Phys. Lett. 72, 211 (1998).
[4] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang,Y. K. Song, H. Zhou, and A. V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998).
[5] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, IEEE Electron Device Lett. 18, 492 (1997).
[6] William A. Melton, Jacques I. Pankove, J. Cryst. Growth. 178, 168 (1997).
[7] F. Bernardini, V. Fiorentini, Phys. Rev. B 56 R10024 (1997).
[8] F. Bernardini, V. Fiorentini, Phys. Rev. B 57 R9427 (1998).
[9] T. Takeuchi, S. Sota, M. Katsurgawa, M. Komori, H Takeuchi, H.Amano, I. Akasaki, Jpn. J. Appl. Phys. 36, 382 (1997).
[10] C. Q. Chen., Appl. Phys. Lett. 81, 3194 (2002).
[11] E. Kuokstis., Appl. Phys. Lett. 81, 4130 (2002).
[12] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett. 81, 469 (2002).
[13] H. M. Ng, Appl. Phys. Lett. 80, 4369 (2002).
[14] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nature, 406, 865 (2000).
[15] Y. J. Sun, O. Brandt, Manfred Ramsteiner, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 82, 3850 (2003).
[16] A. P. Kroon , G. W. Schafer. J. A. Alloy. Comp. 314, 147 (2001).
[17]黃惠君,中山大學材料科學所博士論文,民國九十七年。
[18] M. Marezio, Acta. Cryst. 19, 396 (1965).
[19] K. Kinoshita, J.W. Sim and J.P. Ackerman, Mat. Res. Bull. 13, 445 (1978).
[20] O. Renoult, J.P. Boilot and M. Boncoeur, J. Am. Ceram. Soc. 77, 249 (1994).
[21] H. P. Maruska, D.W. Hill, M.C. Chou, J.J. Gallagher, B. Chai, Opto-Electronics Rev.11(1), 7 (2003).
[22] R. Dronskowski, Inorg. Chem. 32, 1 (1993).
[23] P. Waltereit, O. Brandt, and K. H. Ploog, Appl. Phys. Lett. 75, 2029 (1999).
[24] Y. J. Sun, O. Brandt, and K. H. Ploog, J. Vac. Sci. Technol. B 21, 1350 (2003).
[25] R. R. Vanfleet and J.A. Simmons, Appl. Phys. Lett. 83, 1139 (2003).
[26] K. Xu, J. Xu, P. Deng, R. Qiu, Z. Fang, Phys Stat Sol. A.176, 589 (1999).
[27] J. Bai, T. Wang, P.J. Parbrook, K.B. Lee,67 A.G. Cullis, J. Cryst. Growth. 282, 290 (2005).
[28] I. Nikitina, G. Mosina, Yu. Melnik, A. Nikolaev, K. Vassilevski, Materials Science and Engineering B. 61, 325 (1999).
[29] S. Yoshida, S. Misawa, and S. Gonda, J. Vac. Sci. Technol.B. 1, 250 (1983).
[30] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl.Phys. Lett. 48, 353 (1986).
[31] I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, J.Lumin. 48/49, 666 (1991).
[32] S. Nakamura, Y. Harada, and M. Seno, Appl. Phys. Lett. 58, 2021 (1991).
[33] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T.Yamada, T. Matsushida, Y. Sugimoto, and H. Kiyogu, Appl. Phys. Lett. 70, 1417 (1997).
[34] E. S. Hellman, Z.L. Weber, D.N.E. Buchanan, MRS Internet J. Nitride Semicond. Res. 2, 30 (1997).
[35] X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng, F. Zujie, J. Cryst.Growth. 193, 127 (1998).
[36] Mitch M.C. Chou, D.R. Hang, H. Kalisch, R.H. Jansen, Y. Dikme, M. Heuken and G. P. Yablonskii, J. Appl. Phys. 101, 103106 (2007).
[37] H.P. Maruska, B.H. Chai, D.W. Hill, M.C. Chou, J.J. Gallagher and S. Brown, Structural properties of Free-Standing 50mm Diameter GaN Wafers with Orientation Grown on LiAlO2.
[38] D.L. Smith, Thin-Film Deposition-Principles and Practice, McGraw-Hill 1995.
[39] 莊達人 編著, “VLSI 製造技術” , 高立圖書有限公司, pp.150-159 (2006) 。
[40] C. Liu, Z. Xie, P. Han, J. Cryst. Growth. 298, 228 (2007).
[41] N.Cochran and L.M. Foster, J. Electrochem. Soc. 109, 144 (1962).
[42] M.D. Reed, O.M. Kryliouk, M.A. Mastro, T.J. Anderson, J. Cryst.Growth. 274, 14 (2005).
[43] R. R. Reeber and K. Wang, J. Mater. Res. 15, 40 (2000).
[44] Y. J. Sun, O. Brandt, and K. H. Ploog, J. Vac. Sci. Technol. B. 21, 1350 (2003).
[45] S. Tanaka, S. Iwai, and Y. Aoyagi, J. Cryst.Growth. 170, 329 (1997).
[46] S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. G. de Peralta, G. A.
Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, Appl. Phys. Lett. 75, 2073 (1999).
[47] J. Neugebauer and C.G. Van de Walle, Appl. Phys. Lett. 69, 503(1996).
[48] R. Singh, R. J. Molnar, M. S. Ünlü and T. D. Moustakas, Appl. Phys. Lett. 64, 336 (1994).
[49] P. Waltereit, O. Brandt, M. Ramsteiner, R. Uecker, P. Reiche, K. H. Ploog, J. Cryst. Growth. 218, 143 (2000).
[50] Otfried Madelung, Semiconductors: Data Handbook 3rd edition. pp106.
[51] D. N. Zakharov and Z. L. Weber, Phys. Rev. B. 71, 235334 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.80
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code