Responsive image
博碩士論文 etd-0723108-162918 詳細資訊
Title page for etd-0723108-162918
論文名稱
Title
利用周邊蒸鍍方法提升釔鋁石榴石晶體光纖 之四價摻鉻離子濃度之研究
Study of enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber using pre-growth perimeter deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-16
繳交日期
Date of Submission
2008-07-23
關鍵字
Keywords
摻鉻釔鋁石榴石、晶體光纖、加熱基座成長法
Cr4+:YAG, crystal fiber, laser-heated pedestal growth
統計
Statistics
本論文已被瀏覽 5794 次,被下載 1142
The thesis/dissertation has been browsed 5794 times, has been downloaded 1142 times.
中文摘要
摻鉻釔鋁石榴石晶體光纖擁有近紅外光的螢光頻譜,波長範圍涵蓋從1.2到1.6 微米,適合於發展可調波長固態雷射與光纖通訊的自發輻射光源及光放大器。本論文研究摻鈣或鈣/鎂的摻鉻釔鋁石榴石晶體光纖,經由加熱基座成長法與1500℃的退火處理下,分析鉻的離子價態,在經氧與氮環境退火後,鉻的三價與四價在八面體與四面體的濃度分佈首次被探討。
八面體的四價鉻離子能遷移至四面體約有4%,發現的遷移溫度發生於700℃以上,它們的相對穩定能經氧退火與氮退火處理後,在摻鈣/鉻的釔鋁石榴石晶體分別為0.25和0.3電子伏特;在摻鎂/鈣/鉻的釔鋁石榴石晶體則為0.47和0.49電子伏特。在摻鈣/鉻的釔鋁石榴石晶體光纖(Ca/Cr=113.1%)於氧環境下退火,約有35%與2.5%的鈣離子能電荷補償成位於八面體與四面體的四價鉻離子。而鈣離子的摻雜也產生了氧空缺。經由實驗計算得出,在氧環境與氮環境退火下,未反應的氧空缺與全部氧空缺的比值分別為63%與88%。因此可說明釔鋁石榴石晶體中未能大幅提升四面體的四價鉻離子的主因為未反應的氧空缺之存在。
而且,在加熱基座成長法抽拉釔鋁石榴石晶體光纖過程中,可以發現在每次降低直徑時,鈣離子有向外擴散且造成四價鉻離子數量的明顯衰減。因此,在加熱基座成長法實施前,利用電子鎗將三氧化二鉻(Cr2O3)與氧化物(氧化鈣或氧化鎂)蒸鍍於晶體周邊來提升四價鉻子濃度。由實驗發現,摻雜鈣離子的效率較佳於摻雜鎂離子,因為鈣離子較易溶入釔鋁石榴石晶體且有較少的缺陷出現。氧化鈣蒸鍍於釔鋁石榴石晶體並於1350℃ 的氧環境下退火,四價鉻離子濃度有效地提升了110%。且四價鉻離子數達到每立方公分1.76 10^18個,四價鉻離子與全部鉻離子之比值為5.5。
Abstract
Cr4+ doped Yttrium aluminum garnet (YAG) has a strong spontaneous emission that can generate near-infrared emission from 1.2 to 1.6 μm. This broadband emission have aroused great interest in developing tunable wavelength lasers and amplified spontaneous emitter (ASE).In this dissertation, The valence states of Cr ions in Ca or Ca/Mg co-doped Cr:YAG single-crystal fibers are studied. The fibers were grown using the laser-heated pedestal growth (LHPG) method, followed by annealing treatments up to 1500 oC. The concentrations of the Cr3+ and Cr4+ ions in octahedral and tetrahedral sites in oxygen or nitrogen environments were characterized for the first time to our knowledge.
Above 700 oC, migration of Cr4+ between octahedral and tetrahedral sites takes place, the ratio is about 4%; its relative stabilization energy was estimated. For Ca,Cr:YAG annealed in an oxygen or nitrogen environment, it was 0.25 and 0.3 eV, respectively. For Mg,Ca,Cr:YAG annealed in oxygen or nitrogen, it was 0.47 and 0.49 eV, respectively. For the Ca,Cr:YAG crystal fiber (Ca/Cr=113.1%) with oxygen annealing, about 35% and 2.5% of Ca ions took part in charge compensation for Cr4+ in the octahedral and tetrahedral sites, respectively. The density of oxygen vacancies depends on the concentration of Ca ions. The estimated ratios of the unreacted oxygen vacancies to total oxygen vacancies were about 63% and 88% for oxygen and nitrogen annealing, respectively. The main limitation on the concentration of Cr4+ in the tetrahedral site of YAG is the presence of unreacted oxygen vacancies.
Furthermore, chromium ions tend to diffuse outward during the LHPG of YAG crystal fiber, in which the average Cr4+ ion concentration decreases significantly after each diameter-reduction step. The Cr4+ ions are replenished using an electron gun to deposit Cr2O3 and divalent-ion oxide (CaO or MgO) on the source rod circumference before growth. It was observed that Ca2+ has better efficiency to diffuse into the source rod more efficiently than Mg2+generating fewer defects and stacking faults. By CaO deposition and post growth annealing at 1350 oC under an oxygen environment, a 110% increase in Cr4+ concentration was obtained. The achieved Cr4+ concentration and the ratio of Cr4+ to total Cr were 1.76 10^18 cm^-3 and 5.5, respectively.
目次 Table of Contents
中文摘要i
Abstractii
Table of Contents iii
List of Tables v
List of Figures vi

Chapter 1 Introduction 1

Chapter 2 Cr ion oxidation states in Cr:YAG crystal fiber 6
2.1 Structure of YAG 6
2.2 The valence states of Cr in divalent ions co-doped Cr:YAG 9
2.2.1 Oxidation state of Cr3+ ions in octahedral sites 9
2.2.2 Oxidation state of Cr4+ ions in tetrahedral sites 13
2.2.3 Oxidation state of Cr4+ ions in octahedral sites 21
2.2.4 Oxidation state of Cr6+ ions in tetrahedral sites 23

Chapter 3 Fabrication and measurement of Cr:YAG crystal fiber 26
3.1 LHPG system and fabrication processes 26
3.1.1 LHPG apparatus 26
3.1.2 Fabrication processes of the Cr4+ single crystal fiber 28
3.2 Laser scanning confocal microscopy and fluorescence mapping 34
3.2.1 Measurement of concentrations of octahedral Cr3+ ions 34
3.2.2 Measurement of concentrations of tetrahedral Cr4+ ions 37

Chapter 4 Evolution of Cr ion oxidation states in Ca or Ca/Mg co-doped
Cr:YAG crystal fibers with annealing treatment 44
4.1 Composition and fluorescence measurements 45
4.2 Cr3+ and Cr4+ fluorescence spectra 47
4.3 The influence of nitrogen and oxygen annealing treatments 49
4.4 Discussion and analysis 52
4.4.1 Analysis of Cr ion oxidation states and the relative stabilizing energy 52
4.4.2 Reduced charge compensation efficiency due to oxygen vacancies 57

Chapter 5 Cr4+ enhancement by perimeter deposition and annealing treatment 58
5.1 Sample preparation 61
5.2 CaO, MgO, and Cr2O3 concentration profiles in the crystal fibers after perimeter deposition 64
5.3 Effects of annealing treatment, Cr contents and divalent co-dopant on the Cr4+ fluorescence intensity 64
5.4 The defect analysis of crystal fiber after perimeter deposition 70
5.5 Simulated ASE power and required Cr4+:YAG crystal fiber length 74

Chapter 6 Conclusions 76

References 79
Biography 88
Publication List 89
參考文獻 References
Chapter 1
[1.1] P. M. W. French, N. H. Rizvi, J. R. Taylor, and A. V. Shestakov, “Continuous-wave mode-locked Cr4+:YAG laser,” Optics Letter 18, 39 (1993).
[1.2] Y. Ishida and K. Naganuma, “Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser,” Optics Letters 21, 51 (1996).
[1.3] N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Japanese Journal of Applied Physics 40, 1253 (2001).
[1.4] K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics- a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Japanese Journal of Applied Physics 41, 96 (2002).
[1.5] H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Japanese Journal of Applied Physics 45, 133 (2006).
[1.6] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letter 29, 439 (2004).
[1.7] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letter 30, 129 (2005).
[1.8] S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Physical Review B 51 (24), 17323 (1995).
[1.9] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 um,” Electronics Letters 23, 1026 (1987).
[1.10] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Optics Letters 12, 888 (1987).
[1.11] J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 um Er3+ doped silica fiber amplifier,” Electronics Letters 26, 1645 (1990).
[1.12] E. Ishikawa, M. Nishihara, Y. Sato, C. Ohshima, Y. Sugaya, and J. Kumasako, “Novel 1500 nm-band EDFA with discrete Raman amplifier,” Proceeding of European Conference on Optical Communication, 48 (2001).
[1.13] C. A. Millar and P. W. France, “Diode-laser pumped erbium-doped fluorozirconate fiber amplifier for the 1530 nm communications window,” Electronics Letters 26, 634 (1990).
[1.14] Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-um broadband amplification,” Optics Letters 23, 274 (1998).
[1.15] T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “1.47 um band Tm3+ doped fluoride fiber amplifier using a 1.064 um upconversion pumping scheme,” Electronics Letters 29, 110 (1993).
[1.16] T. Kasamatsu, Y. Yano, and H. Sekita, “1.50-um-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-um dual-wavelength pumping,” Optics Letters 24, 1684 (1999).
[1.17] A. Cucinotta, F. Poli, and S. Selleri, “Gain characteristics of thulium-doped tellurite fiber amplifiers by dual-wavelength (800 nm+1064 nm) pumping,” Optical Fiber Communications Conference, Post Conference Digest 86, paper FB1 (2003).
[1.18] B. Cole and M. L. Dennis, “S-band amplification in a thulium doped silicate fiber,” Optical Fiber Communication Conference, Post Conference Digest 54, paper TuQ3 (2001).
[1.19] R. S. Feigelson, “Pulling optical fibers,” Journal of Crystal Growth 79, 669 (1986).
[1.20] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Near-infrared laser crystals based on 3d2 ions spectroscopic studies of 3d2 ions in oxide, melilite and apatite crystals,” Journal of Crystal Growth 140, 349 (1994).
[1.21] S. Kuck, U. Pohlmann, K. Petermann, G. Huber, and T. Schonherr, “High resolution spectroscopy of Cr4+ doped Y3Al5O12,” Journal of Luminescence 60-61, 192 (1994).
[1.22] S. Fukaya, K. Adachi, M. Obara, and H. Kumagai, “The growth of Cr4+:YAG and Cr4+:GGG thin films by pulsed laser deposition,” Optics Communications 187, 373 (2001).
[1.23] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth 183, 614 (1998).
[1.24] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Review of Scientific Instruments 55, 1791 (1984).
[1.25] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr,Ca:Y3Al5O12,” Journal of Crystal Growth 140, 349 (1994).
[1.26] J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” Journal of Crystal Growth 274, 522 (2005).



Chapter 2
[2.1] S. C. Abrahams and S. Geller, “Refinement of the structure of a gossularite garnet” Acta Crystallographica 11, 893 (1958).
[2-2] L. I. Krutova, N. A. Kulagin, V. A. Sandulenko, and A. V. Sandulenko, “Electronic state and positions of chromium ions in garnet crystals” Fiz. Tverd. Tela (Leningrad) 31, 170 (1989). [Sov. Phys. Solid State 31, 1193 (1989).]
[2.3] M. A. Gülgün, W. Y. Ching, Y. N. Xu, and M. Rühle, “Electron states of YAG probed by energy-loss near-edge spectrometry and Ab initio calculations,” Philosophical Magazine B 79, 921 (1999).
[2.4] A. A. Kaminskii, “Laser crystals. Their physics and properties 2nd,” Springer, New York (1990).
[2.5] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Applied Physics Letter 82, 4035 (2003).
[2.6] D. S. McClure, “Electronic spectra of molecules and ions in crystals,” Academic Press, New York and London (1959).
[2.7] G. Boulon, “Effects of disorder on the spectral properties of Cr-doped lasses, glass ceramics and crystals,” Disordered Solids: Structure and Processes, Plenum Press, New York (1988).
[2.8] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Progress in Quantum Electronics 28, 249 (2004).
[2.9] Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions I,” Journal of Physical Society Japan 9, 753 (1954).
[2.10] A. L. Schawlow, “Fine-line spectra of chromium ions in crystal,” Journal of Applied Physics 33, 395 (1962)
[2.11] S. Sugano, Y. Tanabe, and H. Kamimura, “Multiplets of transition-metal ions in crystals,” Academic, New York (1970).
[2.12] Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Physical Review B 56, 10882 (1997)
[2.13] J. C. Chen, K. Y. Huang, C. N. Tsai, Y. S. Lin, C. C. Lai, G. Y. Liu, F. J. Kao, S. L. Huang, C. Y. Lo, Y. S. Lin, and P. Shen, “Composition dependence of the microspectroscopy of Cr ions in double-clad Cr:YAG crystal fiber,” Journal of Applied Physics 99, 093113 (2006).
[2.14] M. Grinberg, J. Barzowska, Y. R. Shen, K. L. Bray, B. V. Padlyak, and P. P. Buchynskii, “High-pressure luminescence of Cr3+-doped CaO-Ga2O3-GeO2 glasses,” Physical Review B 65, 064203 (2002).
[2.15] J. Dong, P. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr,Yb:YAG crystal,” Optics Communications 170, 255 (1999).

[2.16] J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” Journal of Physics C: Solid State Physics 7, 2241 (1974).
[2.17] B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991).
[2.18] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr,Ca:Y3Al5O12,” Journal of Crystal Growth 140, 349 (1994).
[2.19] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopants on the Cr 4 + of Cr-doped Y3Al5O12 content,” Journal of Crystal Growth 180, 81 (1997).
[2.20] Http://www.webelements.com.
[2.21] K. R. Brown and D. A. Bonnell, “Cation segregation to yttrium aluminum garnet (111) surface,” Surface Science 414, 341 (1998).
[2.22] L. Schuh, R. Metselaar, and G. de With, “Electrical transport and defect properties of Ca- and Mg-doped yttrium aluminum garnet ceramics,” Journal of Applied Physics. 66, 2627 (1989).
[2.23] H. Eilers, U. Hommerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Physical Review B 49 (22), 15505 (1994).
[2.24] S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” Journal of Luminescence 68, 1 (1996).
[2.25] R. Moncorge, D. J. Simkin, G. Cormier, and J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium-doped forsterite,” Tunable Solid State Lasers 5, 93 (1989).
[2.26] C. Deka, M. Bass, B. H. T. Chai, and Y. Shimony, “Optical spectroscopy of Cr4+:Y2SiO5,” Optical Society of America B 10, 1499 (1993).
[2.27] H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG Laser,” IEEE Journal of Quantum Electronics 29, 2508 (1993).
[2.28] Y. Chang, “Ultrashort Optical Pulse Generation from a Cr4+-doped Yttrium Aluminium Garnet Tunable Solid-state Laser,” Ph. D. Dissertation, Université de Montréal, Quebec, Canada, (1999).
[2.29] L. I. Krutova, A. V. Lukin, V. A. Sandulenko, E. A. Sidorova, and V. M. Solntsev, “Phototropic centers in chromium-doped garnets,” Optics and Spektrosk 63, 1174 (1987). [Optics and Spectroscopy (USSR) 63, 693 (1987).]
[2.30] S. B. Ubiszkii, S. S. Melnyk, B. V. Padlyak, A. O. Matkovskii, A. J.-Frydel, and Z. Frukacz, “Chromium recharging processes in the Y3Al5O12: Mg, Cr single crystal under the reducing and oxidizing annealing influence,” Proceedings of SPIE 4412, 63 (2001).
[2.31] B. Henderson, H. G. Gallagher, T. P. J. Han, and M. A. Scott, “Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets,” Journal of Physics: Condensed Matter 12, 1927 (2000).
[2.32] A. G. Okhrimchuk, and A. V. Shestakov, “Performance of YAG: Cr4+ laser crystal,” Optical Material 3, 1 (1994).



Chapter 3
[3.1] C. Y. Lo, “Growth, characterization, and application of doped-YAG single-crystal fibers,” Ph.D. dissertation, Taiwan (2004).
[3.2] J. Y. Ji, P. Shen, J. C. Chen, F. J. Kao, S. L. Huang, and C. Y. Lo, “On the deposition of spinel particles upon laser-heated pedestal growth of Cr:YAG fiber,” Journal of Crystal Growth 282, 343 (2005).
[3.3] J. C. Chen, “Spectroscopic study on the fluorescence of Cr ions in double-clad Cr:YAG crystal fiber,” Ph.D. dissertation, Taiwan (2006).
[3.4] D. Jun, D. Peizhen, and X. Jun, “The growth of Cr4+, Yb3+:Yttrium Aluminum Garnet (YAG) crystal and its absorption spectra properties,” Journal of Crystal Growth 203, 163 (1999).
[3.5] B. Cockayne, “Developments in melt-grown oxide crystals,” Journal of Crystal Growth 3-4, 60 (1968).
[3.6] N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of an Y3Al5O12:Cr4+ laser in the wavelength region of 1.35-1.6 um,” Bulletin of the Academy of Sciences of the USSR Physical Series 54, 54 (1990).



Chapter 4
[4.1] P. Kisliuk and W. F. Krupke, “Exchange interactions between Chromium ions in Ruby,” Journal of Applied Physics 36, 1025 (1965).
[4.2] W. C. Zheng, “Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy,” Journal of Physics: Condensed Matter 7, 8351 (1995).
[4.3] B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Optical Materials 13, 117 (1999).



Chapter 5
[5.1] P. Yang, P. Deng, Z. Yin, and Y. Tian, “The growth defects in Czochralski-grown Yb:YAG crystal,” Journal of Crystal Growth 218, 87 (2000).
[5.2] H. Udono and I. Kikuma, “Etch pits observation and etching properties of δ-FeSi2,” Materials Science in Semiconductor Processing 6, 413 (2003).
[5.3] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of the Optical Society of America B 18, 1578 (2001).
[5.4] A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE Journal of Quantum Electronics 35, 1548 (1999).
[5.5] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: Fundamentals and Technology,” Academic Press, San Diego, (1999).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code