Responsive image
博碩士論文 etd-0723109-020248 詳細資訊
Title page for etd-0723109-020248
論文名稱
Title
摻鉻釔鋁石榴石雙纖衣晶體光纖之近場光譜研究
Near-field spectroscopic study of Cr:YAG double-clad crystal fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-21
繳交日期
Date of Submission
2009-07-23
關鍵字
Keywords
摻鉻釔鋁石榴石雙纖衣晶體光纖、摻鉻釔鋁石榴石、壓應力、近場、奈米晶粒
Cr:YAG DCF, Near-field, , Cr:YAG, strain, nano-crystals
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
由於近年來光通訊頻寬需求急速增加,使得研製具有超寬頻特性之增益介質成為一重要課題。其中,以摻鉻釔鋁石榴石(Cr4+:YAG)於光通訊波段具有3 dB頻寬高達265 nm之超寬頻特性最受矚目。本實驗室已成功以雷射加熱基座生長法(laser-heated pedestal growth method)研製出具有波導結構、低損耗及超低激發閥值(ultralow threshold)之摻鉻釔鋁石榴石雙纖衣晶體光纖(Cr4+:YAG double-clad crystal fiber)超寬頻光源、光放大器及雷射,顯示摻鉻釔鋁石榴石雙纖衣晶體光纖在未來光通訊中極具有潛力取代目前之摻鉺光纖。故本論文著重於研究奈米尺度光學與微結構之相互關係,進而提升摻鉻釔鋁石榴石雙纖衣晶體光纖所研製之元件效率。

在奈米尺度光學與微結構方面,近場掃描式光學顯微鏡( near-field scanning optical microscopy)和高解析穿透式電子顯微鏡(high-resolution transmission electron microscopy)等兩種技術在奈米光譜學與奈米結構上扮演了很重要的角色。本論文首先針對具有異質結構(heterostructure)、高硬度及極脆弱之摻鉻釔鋁石榴石雙纖衣晶體光纖,成功製作高解析穿透式電子顯微鏡之試片,並藉此試片首度以具有高空間分辨率(spatially resolved)之近場掃描式光學顯微鏡解析出位於內層纖衣(inner cladding)內奈米結晶顆粒之近場螢光頻譜特性,並搭配高解析穿透式電子顯微鏡於微結構上作一比較。此外,本論文亦藉由量測摻鉻釔鋁石榴石雙纖衣晶體光纖纖心(core)之近場光譜特性,分析因纖心與內層纖衣之熱膨脹係數不同所產生之應力變化(strain)分佈、螢光生命週期及生長參數三者關係。對應11 μm和25 μm纖心,應變量分別為-0.04 %和0.06 %,預測應變量為0 %時,纖心直徑約為20 μm。
Abstract
With the escalating demands for optical communication network system, the need for broadband gain medium in optical communication has increased. Among them, Cr4+:YAG crystal has shown an exceptionally successful broadband amplified spontaneous emission (ASE) light source that fully cover 1.2-1.6 μm range (3-dB bandwidth up to 265 nm). More recently, we demonstrated the realization of a waveguiding, low-loss, and ultralow threshold Cr4+:YAG double-clad crystal fiber (DCF) based ultrabroadband ASE light source, optical amplifier, and laser grown by the codrawing laser-heated pedestal growth (LHPG) technique. These results demonstrate the potential of the Cr4+:YAG DCF for the replacement of the erbium doped fiber in future optical communications. In this thesis, we focus on the correlation between the nanospectroscopy and nanostructure of the Cr:YAG DCF in order to further improve its device performance.

For nanospectroscopic and nanostructural characterizations, near-field scanning optical microscopy (NSOM) and high-resolution transmission electron microscopy (HRTEM) techniques have played key roles. In this thesis, we successfully prepared the HRTEM specimen of Cr:YAG DCF, which is heterostructure, ultrahard, but fragile. Here we show the first study on the nanospectroscopy and nanostructure of the nanocrystals in the inner cladding of Cr:YAG DCF by highly spatial resolved NSOM. The NSOM results were compared with those obtained by HRTEM. In addition, the difference in thermal expansion coefficients between a YAG core and an inner cladding creates a significant localized strain field beneath the core, which can result in optical confinement and provide the possibility to simultaneously control the Cr3+ and Cr4+ fluorescence with systematically varied growth parameters. This new class of strain-tunable Cr:YAG DCF opens up new opportunity to improve the performance of the Cr:YAG DCF based ultrabroadband light source, optical amplifier, and crystal fiber laser in all-optic fiber communications.
目次 Table of Contents
目錄
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
第二章 Cr:YAG雙纖衣晶體光纖之特性 4
2.1 Cr:YAG晶體之結構與特性 4
2.2 Cr:YAG能階模型及光譜特性 10
2.2.1 Cr3+:YAG能階、吸收及放射光譜 10
2.2.2 Cr4+:YAG能階、吸收及放射光譜 14
2.3雙纖衣晶體光纖之傳輸特性 18
2.4應力對於Cr3+螢光光譜之影響 28
第三章 近場掃描式光學顯微鏡原理 32
3.1近場掃瞄光學顯微鏡之原理 32
3.2近場掃描光學顯微鏡之光侷限機制 35
3.3 NSOM及AFM之高度維持機制 37
3.3.1 AFM之高度維持機制 37
3.3.2 NSOM之高度維持機制 48
第四章 Cr:YAG雙纖衣晶體光纖生長及近場光學量測樣品之製備 52
4.1 Cr:YAG雙纖衣晶體生長架構及方法 52
4.2 近場光學量測樣品之製備 59
第五章 Cr:YAG雙纖衣晶體光纖之近場光學量測及結構分析 63
5.1 Cr:YAG雙纖衣晶體光纖之成分分析 63
5.2 Cr3+近場光學量測及微結構分析 67
5.2.1纖心內應力與光譜物性比較 67
5.2.2 内層纖衣之奈米晶體近場光譜與其微結構
81
5.3 Cr4+近場光學量測與分析 90
5.4 Cr:YAG雙纖衣晶體光纖之螢光Cr3+和Cr4+螢光
99
第六章 結論 102
參考文獻 103
中英對照表 108
參考文獻 References
[1] R. S. Feigelson, W. L. Kway, and R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Optical Engineering 24, 1102 (1985).

[2] J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Report NASA-CR-120948 (1972).

[3] C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Applied Physics Letters 26, 318 (1975).

[4] M. M. Fejer, G. A. Magel, and R. L. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Applied Optics 24, 2362 (1985).

[5] S. Sudo, A. Cordova-Plaza, R. L. Byer, and H. J. Shaw, “MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding,” Optics Letters 12, 938 (1987).

[6] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth 183, 614 (1998).

[7] S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal fiber laser,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD4.

[8] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to the sub-10-nm regime,” Science 306, 2057 (2004).

[9] J. A. Xu, H. K. Mao, and P. M. Bell, “High-pressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal,” Science 232, 1404 (1986).

[10] Y. K. Vohra, S. J. Duclos, K. E. Brister, and A. L. Ruoff, “Static pressure of 255 GPa (2.55 Mbar) by X-ray diffraction: comparison with extrapolation of the ruby pressure scale,” Physical Review Letters 61, 574 (1988).

[11] H. Liu, K. S. Lim, W. Jia, E. Strauss, and W. M. Yen, “Effect of tensile stress on the R line of Cr3+ in a sapphire fiber,” Optics Letters 13, 931 (1988).

[12] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters 29, 439 (2004).

[13] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L . Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters 30, 129 (2005).

[14] C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Optics Letters 33, 2919 (2008).

[15] E. Drescher-krasicka and J. R. Willis, “Mapping stress with ultrasound,” Nature 384, 52 (1996).

[16] A. T. Macrander, S. Krasnicki, Y. Zhong, J. Maj, and Y. S. Chu, “Strain mapping with parts-per-million resolution in synthetic type-Ib diamond plates,” Applied Physics Letters 87, 194113-1 (2005).

[17] J. A. Robinson, C. P. Puls, N. E. Staley, J. P. Stitt, M. A. Fanton, K. V. Emtsev, T. Seyller, and Y. Liu, “Raman topography and strain uniformity of large-area epitaxial graphene,” Nano Letters 9, 964 (2009).

[18] M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Ruhle, “Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations,” Philosophical Magazine B 79, 921 (1999).

[19] H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE Journal of Quantum Electronics 29, 2508 (1993).

[20] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proceedings on Advanced Solid-State Lasers 10, 92 (1991).

[21] B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991).

[22] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Progress in Quantum Electronics 28, 249 (2004).

[23] S. Sugano and Y. Tanabe, and H. Kamimura, “Multiplets of transition-metal ions in crystals,” Academic, New York (1970).

[24] R. C. Powell, “Physics of solid-state Laser materials,” Springer, New York (1997).

[25] B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Applied Physics B: Photophysics and laser chemistry 36, 195 (1985).

[26] Z. Zhang, K. T. V. Grattan, and W. Palmer, “Temperature dependences of fluorescence lifetime in Cr3+-doped insulating crystals,” Physical Review B 48, 7772 (1993).

[27] P. Kisliuk and C. A. Moore, “Radiation from the 4T2 state of Cr3+ in Ruby and Emerald,” Physical Review 160, 307 (1967).

[28] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of Optical Society of America B 18, 1578 (2001).

[29] G. Keiser, “Optical fiber communications,” 3rd ed. McGraw-Hill, Ch. 2 and Ch. 3 (2000).

[30] B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” 1st ed. John Wiley & Sons, Ch. 6 and Ch. 7 (1991).

[31] J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices Part 1: Adiabaticity criteria,” IEEE Proceedings 138, 343 (1991).

[32] P. R. Wamsley and K. L. Bray, “The effect of pressure on the luminescence of Cr3+:YAG,” Journal of Luminescence 59, 11 (1994).

[33] 彭昌盛,宋少先,谷慶寶,”掃描探針顯微技術理論與應用”,第一版,化學工業出版社,民國九十六年。

[34] B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” Journal of Chemical Physics 112, 7761 (2000).

[35] D. W. Pohl and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Optics Letters 20, 970 (1995).

[36] L. Novotny and B. Hecht, “Principles of nano-optics,” 1st, Cambridge University Press, Ch. 6 (2006).

[37] V. L. Mironov, “Fundamentals of scanning probe microscopy,” The Russian academy of sciences institute of physics of microstructure, Nizhniy Novgorod (2004).

[38] http://www.ntmdt.com/

[39] G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Applied Physics Letters 56, 108-110 (1990).

[40] L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Optics Letters 13, 877 (1988).

[41] R. S. Feigelson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method,” Science 240, 1642 (1988).

[42] 張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,民國八十二年。

[43] http://www.ntmdt-tips.com/catalog/snom.html

[44] Y. Chi, H. Yang, S. Liu, M. Li, L. Wang, and G. Zou, “Compression ratio and red shift of the R1 line for YAG : Cr,” High Pressure Research 3, 153 (1990).

[45] D. Ma, X. Zheng, Y. Xu, and Z. Zhang, “Theoretical calculations of the R1 red shift of ruby under high pressure,” Physics Letters A 115, 245 (1986).

[46] M. J. Riley, E. R. Krausz, N. B. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Physical Review B 59, 1850 (1999).

[47] H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Physical Review B 49 , 15505 (1994)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.242.165
論文開放下載的時間是 校外不公開

Your IP address is 3.140.242.165
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code