Responsive image
博碩士論文 etd-0723109-153743 詳細資訊
Title page for etd-0723109-153743
論文名稱
Title
數位同步解調及其應用
Digital coherent receiver and its application for pilot tone transmission
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
47
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-08
繳交日期
Date of Submission
2009-07-23
關鍵字
Keywords
數位、同步解調
coherent, digital
統計
Statistics
本論文已被瀏覽 5691 次,被下載 2161
The thesis/dissertation has been browsed 5691 times, has been downloaded 2161 times.
中文摘要
在光纖通訊傳輸這塊領域大部分所使用的解調方式為強度調變/直接解調(IM/DD)已持續一段時間了,此種技術也以被商業化。但使用此種技術會使光訊號中相位的資訊被忽略掉。由於通訊技術日益增進,傳輸量越做越大,使用IM/DD 這種傳輸系統只能單單增測到光訊號強度的變化,它無法運用到光裡面所含的相位及頻率所提供的資訊,因此這種技術很難改進來符合未來發展高速傳輸的需求,如果我們能利用光訊號的相位資訊來當作傳送訊號的媒介,將會使傳輸量大大增進。因此一種新的解調方式稱作:同步解調技術慢慢被人們研究,次技術對近來光纖通訊研究專注於高傳輸量有相當大的幫助,但是此種技術由於主要是靠光的相位來當作傳輸的媒介,對光相位的敏感程度相對要求較為嚴格。在1980 年代
此種技術剛開始發展,但也因為碰到上述相位敏感度的嚴格限制,此種技術沒落了一陣子,但近幾年由於電腦的普及化,所能處理得資料量越來越大,可以藉由數位訊號處理的方式去克服原先類比訊號及硬體上的不便,此種技術近幾年來又開始被人們所探討。結合數位訊號處理技術和光同步解調技術可以改善同步解調所面臨到電路複雜的問題,此篇論文在探討如何結合此兩種技術進而使同步解調有機會實現高速光纖傳輸系統。
Abstract
In the field of optical fiber communication, the IM/DD system had been used to commercial usage for many years. The merits of this scheme are its simple idea and easiness to realize. However, such a system can not afford the requirement of the capacity people demand anymore. Recently, the research of the optical fiber communication is focused on how to increase the spectral efficiency to attend the high speed transmission. Coherent system had been
investigated widespreadly a few tens years ago. This technique could improve the spectral efficiency. Nevertheless, the difficulty of coherent system was its
receiver circuit was quite complicated and could not be realized at that time. Accompanying with the improvement of the technique, a developed technique
called digital signal processing (DSP) could overcome such difficulties. This master thesis is focused on how to cooperate these two techniques that may be required for the next generation high speed transmission system.
目次 Table of Contents
 感謝 I
 中文摘要 II
 Abstract III
1. Introduction 1
1.1 The background of coherent detection scheme 1
1.2 Motivation of this thesis 2
1.3 The structure of this thesis 3
1.4 References 3
2. Study of transmission performance comparison of 100Gbit/s
OFDM signal using QPSK and 16QAM forma 5
2.1 Introduction 5
2.2 Simulation setup 5
2.2.1 Transmitter 6
2.2.2 Transmission line 7
2.2.3 Receiver 8
2.3 Result and discussion 9
2.4 Conclusion 11
2.5 References 12
3. The application of digital signal processing 13
3.1 Basic concept of digital signal processing 13
3.2 Limitation of digital signal processing analysis 15
3.2.1 Maximum sampling points 15
3.2.2 Sampling point location 16
3.2.3 Sampling distance mismatch 18
3.3 Source program 19
3.4 Example of result 22
3.5 Conclusion 23
3.6 References 24
Attachment of chapter 3 26
4. Experimental investigation of digital coherent receiver 29
4.1 Basic concepts of coherent detection scheme 29
4.2 Limitation factors of coherent detection 30
4.2.1 Phase mismatch 30
4.2.2 Wavelength mismatch 31
4.3 Experimental setup 31
4.3.1 Transmitter 31
4.3.2 Transmission line 33
4.3.3 Receiver 34
4.4 Result and discussion 35
4.5 References 37
5. Summary 39
參考文獻 References
chapter 1
[1] P. Boffi, L. Marazzi, L. Paradiso, P. Parolari, A. Righetti, R. Siano, P. Franco, R. Cigliutti, D. Mottarella, and M. Martinelli, "Experimental comparison of RZ-IMDD and RZ-DQPSK performance in a standard
2000-km DWDM system," Proceedings of CLEO 2004, paper CThBB5, May 2004.
[2] G. Bosco, and P. Poggiolini, “The impact of receiver imperfections on the performance of optical direct-detection DPSK,” Journal of Lightwave
Technology, vol. 23, no. 2, pp. 842-848, February 2005.
[3] Y. Yadin, M. Orenstein, and M. Shtaif, ”Optical DPASK and DQPSK: A comparative analysis for linear and nonlinear transmission,” IEEE Journal
of Selected Topics in Quantum Electronics, vol. 12, no. 4, pp.581-588, July/August 2006.
[4] H. Taga, J.-Y. Wu, W.-T. Shih, and S.-S. Shu, “Numerical study of the performance improvement of the APSK transmission system using
4 zero-nulling method,” Optics Express, vol 16, no. 1, pp. 384-389, January 2008.
[5] C. Fürst, J.-P. Elbers, H. Wernz, H. Grieser, S. Herbst, A. Erhardt, D. Breuer, D. Fritzsche, S. Vorbeck,M. Schneiders, W. Weiershausen, R. Leppla, J. Wendler, M. Schrödel, T. Wuth, C. Fludger, T. Duthel,B. Milivojevic, C. Schulien, “Analysis of crosstalk in mixed 43 Gb/s RZ-DQPSK and 10.7 Gb/sDWDM systems at 50 GHz channel spacing”,
Proceedings of OFC 2007, paper OThS2, 2007.
[6] P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photonics Technology Letters, vol. 15, no. 3, pp. 473-475, March 2003.
[7] C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E. Schmidt, B. Lankl, andW. Rosenkranz, “High spectral efficiency
1.6-b/s/Hz transmission (8x40-Gb/s with a 25-GHz Grid) over 200-km SSMF using RZ-DQPSK and polarization multiplexing,” IEEE Photonics
Technology Letters, vol. 15, no. 9, pp. 1303-1305, September 2003.
[8] L. Christen, S. R. Nuccio, X. Wu, A. E. Willner, “Polarization-based 43
Gb/s RZ-DQPSK receiver design employing a single delay-line interferometer,” Proceedings of CLEO 2007, paper CMJJ6, 2007.
[9] E. Ip, A. P. T. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Optics Express, vol. 16, no.2, pp. 753-791, January
2008.
[10] A. H. Gnauck, and P. J. Winzer, “Optical phase-shift-keyed transmission,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 115-129, January
2005.
chapter 2
[1] R. A. Griffin and A. C. Carter, ‘‘Optical differential quadrature phase-shift
key (oDQPSK) for high capacity optical transmission,” Proceedings of
OFC 2002, paper WX6, 2002.
[2] R. A. Griffin, R. I. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K.
Berry, A. C. Carter, M. J. Wale, J. Hughes, P. A. Jerram, and N. J. Parsons,
‘’10 Gb/s optical differential quadrature phase shift key (DQPSK)
transmission using GaAs/AlGaAs integration,‘‘ Proceedings of OFC 2002,
paper FD6, 2002.
[3] X. Wang, T. T. Tjhung, and C. S. Ng, ‘’Error probability performance of
OFDM-ADSL systems,’’ Proceedings of GLOBECOM ‘98, vol. 6, pp.
3326-3331, 1998.
[4] M. D. Nava and G. S. Okvist, ‘‘The Zipper prototype: a complete and
flexible VDSL multicarrier solution,’’ Communications Magazine, vol. 40,
no. 12, pp. 92-105, 2002.
[5] A.Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F.
Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki,
“30 x 100-Gb/s all-optical OFDM transmission over 1300km SMF with 10
ROADM nodes,” Proceedings of ECOC 2007, Paper PD1.7, 2007.
[6] K. Yonenaga, A. Sano, E. Yamazaki, F. Inuzuka, Y. Miyamoto, A. Takada,
and T. Yamada, ’’100 Gbit/s All-Optical OFDM Transmission Using 4 × 25
Gbit/s Optical Duobinary Signals with Phase-Controlled Optical
Sub-Carriers,’’ Proceedings of OFC 2008, paper JthA48, 2008.
[7] W. Shieh, Q. Yang, and Y. Ma, ‘‘107 Gb/s coherent optical OFDM
transmission over 1000-km SSMF fiber using orthogonal band
multiplexing,‘‘ Optics Express, vol. 16, no. 9, pp. 6378-6386, April 2008.
[8] I.B. Djordjevic, and B. Vasic, ‘’100-gb/s transmission using orthogonal
frequency-division multiplexing’’ IEEE Photonics Technology Letters, vol.
18, no. 15, pp. 1576-1578, 2006.
[9] G. P. Agrawal, Nonlinear Fiber Optics (Fourth Ed.), (Academic Press, SanDiego, CA, 2006).
chapter 3
[1] D.-S. L.-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent
detection of optical quadrature phase-shift keying signals with carrier
phase estimation,” Journal of Lightwave Technology, vol. 24, no. 1, pp.
12-21, January 2006.
[2] K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical
modulation with digital carrier phase estimation,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 12, no. 4, pp.563-570, July/August
2006.
[3] D. Zibar, I. T. Monroy, C. Peucheret, L. A.Johansson, J. E. Bowers and P.
Jeppesen, “DSP based coherent receiver for phase-modulated
radio-over-fiber optical links,” Proceedings of OFC 2008, paper OThH3,
2008.
[4] S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of
optical multilevel phase-shift-keying signals using homodyne detection
and digital signal processing,” IEEE Photonics Technology Letters, vol. 18,
no. 10, pp. 1131-1133, May 2006.
[5] S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection
using external cavity laser diodes in costas loop,” IEEE Photonics
Technology Letters, vol. 2, no. 5, pp.374-376, May 1990.
[6] X. Chen, I. Kim, G. Li, H. Zhang and B. Zhou, “Coherent detection using
optical time-domain sampling,” IEEE Photonics Technology Letters, vol.
21, no. 5, pp. 286-288, March 2009.
[7] T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann
and R. Noé, “Coherent optical communication: Towards realtime systems
at 40 Gbit/s and beyond,” Optics Express, vol. 16, no.2, pp. 866-876,
January 2008.
[8] G. Goldfarb and G. Li, “BER estimation of QPSK homodyne detection with
25
carrier phase estimation using digital signal processing,” Optics Express,
vol.14, no.18, pp. 8043-8053, September 2006.
[9] G. Kalogerakis, W.-T. Shaw, and L. G. Kazovsky, “DSP-based Coherent
Detection Techniques,” Proceedings of OSA/COTA 2006, paper CWC3,
2006.
[10] S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic
compensation of chromatic dispersion using a digital coherent receiver,”
Optics Express, vol. 15, no. 5, pp. 2120-2126, March 2007.
chapter 4
[1] G. Li, “Recent advances in coherent optical communication,” Optics and
Photonics, vol. 1, no. 2, pp. 279–307, February 2009.
[2] J. J. Bussgang, and M. Leiter, “Error performance of quadrature pilot tone
phase-shift keying,” IEEE Transactions on Communication Technology,
vol. com-16, no. 4, pp. 526-529, August 1968.
[3] J. M. Kahn, “BPSK homodyne detection experiment using balanced
optical phase-locked loop with quantized feedback,” IEEE Photonics
Technology Letters, vol. 2, no. 11, pp. 840-843, November 1990.
[4] S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb / s QPSK optical
homodyne detection experiment using external-cavity laser diodes,” IEEE
Photonics Technology Letters, vol. 4, no. 7, pp. 765-767, July 1992.
[5] T. Miyazaki, and F. Kubota, “PSK self-homodyne detection using a pilot
carrier for multibit/symbol transmission with inverse-RZ signal,” IEEE
Photonics Technology Letters, vol. 17, no. 6, pp. 1334-1336, June 2005.
[6] T. Miyazaki, “Linewidth-tolerant QPSK homodyne transmission using a
polarization-multiplexed pilot carrier,” IEEE Photonics Technology Letters,
vol. 18, no. 2, pp. 388-390, January 2006.
[7] S.-G. Park, “APSK receiver for the cancellation of SPM-induced phase
shift,” IEEE Photonics Technology Letters, vol. 18, no. 17, pp. 187-189,
September 2006.
[8] G. P. Agrawal, Nonlinear Fiber Optics (Fourth Ed.), (Academic Press, San
38
Diego, CA, 2006).
[9] G. P. Agrawal, Fiber-Optic Communication Systems (Third Ed.),
(Wiley-Interscience, Rochester, NY, 2002).
[10] N. Takachio, S. Norimatsu, and K. Iwashita, “Optical PSK synchronous
heterodyne detection transmission experiment using fiber chromatic
dispersion equalization,” IEEE Photonics Technology Letters, vol. 4, no. 3,
pp. 278-280, March 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code