Responsive image
博碩士論文 etd-0723109-173348 詳細資訊
Title page for etd-0723109-173348
論文名稱
Title
高雙折射液體填充光子晶體光纖之分析與製作
Analysis and Fabrication of Highly Birefringent Liquid-Filled Photonic Crystal Fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-08
繳交日期
Date of Submission
2009-07-23
關鍵字
Keywords
雙折射、光子晶體光纖
Birefringence, Photonic crystal
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
摘要
近幾年來極化維持光纖已被廣泛的討論與研究,從早期的壓力式雙折射光纖演進到進期較為新穎的極化維持光子晶體光纖,不僅提升了雙折射的效率,更增加了許多優點,例如加大了模態面積及具備大頻寬的單模傳輸。在本論文中,我們提出了在光子晶體光纖中以不對稱的方式填入液體來設計一個可調式的雙折射液體填入光子晶體光纖。我們使用了一個有完美匹配層的有限差分頻域法來分析液體填入式的雙折射光子晶體光纖,成功\\\地分析出液體填入光子晶體光纖後的光學特性,其雙折射效益與傳統的極化光纖相比提升了數倍,在波長1.55 μm時可達到7.1 × 10-3的高度雙折射性,並且具備了可調的光電特性。
而在實驗的部份,我們引進了光子晶體光纖的封孔和校準的技術,在光子晶體光纖的兩側做封塞的動作,再以真空的方式將液體順利地填入光子晶體光纖中,成功地製作出雙折射液體填入光子晶體光纖。而我們也對該光纖作初步的遠場量測,在文中我們也會展示實驗的量測架構與未來努力的方向。
Abstract
Polarization-maintaining fibers (PMFs) have been widely studied and discussed. Nowadays, a novel polarization-maintaining photonic crystal fiber (PMPCF) is proposed with many advantages, such as the large mode area and the single-mode transmission in a wide frequency range. In this thesis, we propose the birefringent liquid-filled PCF with the liquid asymmetrically infiltrated in the cladding region. The Yee-mesh-based finite-difference frequency-domain (FDFD) method is utilized to analyze the birefringent properties of the liquid-filled PCFs. Compared with traditional PMFs, our proposed PCF possesses larger birefringence about 7.1 × 10-3 at 1.55 μm with useful tunable properties.
In the experiment, we have successfully fabricated the birefringent liquid-filled PCF by using the selective blocking technique. The elliptical far field can be observed for our birefringent PCF. We also demonstrate the experiment setup for estimating the birefringence of our birefringent liquid- filled PCF.
目次 Table of Contents
1 Introduction
1.1 Motivations 1
1.2 Chapter Outline 4

2 Numerical Methods
2.1 Overview 11
2.2 Formulae of the FDFD Method 11
2.3 FDFD Method with PMLs 15
2.4 Index Averaging Method 20

3 Numerical Results of Birefringent Liquid-Filled Photonic CrystalFibers 25
3.1 Overview 25
3.2 Highly Birefringent Liquid-Filled PCFs 26
3.3 Loss-Reduced Birefringent Liquid-Filled PCFs30

4 Fabrication and Measurement of Birefringent Liquid-Filled Photonic Crystal Fibers
4.1 Fabrication 48
4.1.1 Tool Fiber and UV gel 49
4.1.2 Alignment Setup 49
4.1.3 Blocking Technique 50
4.1.4 Vacuum Filling Setup 50
4.2 Measurement
4.2.1 Experiment Setup 51
4.2.2 Measurement Result 52
4.2.3 Future work 53

5 Conclusions 66

Bibliography 67
參考文獻 References
[1] Birch, R. D., M. P. Varnham, D. N. Payne, and E. J. Tarbox, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron Lett., vol. 18, pp. 1036–1038, 1982.
[2] Birks, T. A., J. C. Knight, and P. St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961–963, 1997.
[3] Bouwmans, G., L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an allsolid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express, vol. 21, pp. 8452–8459, 2005.
[4] Chew, W.C., and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equation with stretched coordinates,” Microwave Optical Technol. Lett., vol. 7, pp. 599–604, 1994.
[5] Couny, F., F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett., vol. 31, pp. 3574–3576, 2006.
[6] Folkenberg, J. R., M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode photonic crystal fiber,” Opt. Lett., vol. 12, pp. 956–960, 2004.
[7] Hosaka, T., K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett., vol. 17, pp. 530–531, 1981.
[8] John, S., “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987.
[9] Knight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807–809, 2000.
[10] Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476–1478, 1998.
[11] Knight, J. C., T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547–1549, 1996.
[12] Litchinitser, N. M., A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett., vol. 27, pp. 1592–1594, 2002.
[13] Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “ Improved large-mode-area endlessly single-mode photonic crystal fibers,” Opt Lett., vol. 28, pp. 393–395, 2003.
[14] Nielsen, M. D., N. A. Mortensen, J. R. Folkenberg, and A. Petersson, “Improved all-silica endlessly single-mode photonic crystal fiber,” Optical Fiber Communications Conference, 2003.
[15] Okamoto, k. and T. Hosaka, “Polarization-dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett., vol. 12, pp. 290–292, 1987.
[16] Okamoto, K., and J. Noda, “Spectral band-elimination filter consisting of concatenated dual-core fibers,” Electron. Lett., vol. 22, pp. 211–212, 1986.
[17] Okamoto, K., H. Miyazawa, J. Noda, and M. Saruwatari, “Noveloptical isolator consisting of a YIG spherical lens and PANDA-fiber polarizers,” Electron. Lett., vol. 21, pp. 36–38, 1985.
[18] Okoshi, T., N. Fukuya, and K. Kikuchi, “New polarization-state control device: Rotatable fiber cranks,” Electron. Lett., vol. 21, pp. 895–896, 1985.
[19] Onight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807–809, 2000.
[20] Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt Lett, vol. 25, pp. 1325–1327, 2000.
[21] Pekel, U. and R. Mittra, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 84–86, 1995.
[22] Rappaport, C. M., “Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 90–92, 1995.
[23] Sasaki, Y., T. Hosaka, K. Takada, and J. Noda, “8-km long polarization-maintaining fiber with highly stable polarization state,” Electron Lett., vol. 19, pp. 792–794, 1983.
[24] Shibata, N., K. Okamoto, K. Suzuki, and Y. Ishida, “Polarization-mode properties of elliptical-core fibers and stress-induced birefringent fibers,” J. Opt. Soc. Amer., vol. 73, pp. 1792–1798, 1983.
[25] Wolinski, T. R., A. Czapla, S. Ertman, M. Tefelska, A. J. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, “ Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt Quant Electron, vol. 39, pp.1021–1032, 2007.
[26] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.
[27] Yee, K. S., “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 3, pp. 302–307, 1966.
[28] Yokohama, I., K. Okamoto, and J. Noda, “ Fiber-optic polarizing beam splitter employing birefringent fiber coupler,” Electron Lett., vol. 21, pp. 415–416, 1985.
[29] Yu, C. P., and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron., vol. 36, pp. 145–163, 2004.
[30] Zhu, Z., and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express, vol. 10, pp. 853–864, 2002.
[31] Zografopoulos, D. C., “Polarization Properties of liquid-crystal infiltrated photonic crystal fibers,” ICTON, 2008.
[32] Zografopoulos, D. C., E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol., vol. 24, pp. 3427–3432, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.98.13
論文開放下載的時間是 校外不公開

Your IP address is 3.144.98.13
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code