Responsive image
博碩士論文 etd-0723109-194719 詳細資訊
Title page for etd-0723109-194719
論文名稱
Title
聚焦離子束結合感應耦合電漿蝕刻機製作矽基奈米結構之研究
Study on fabrication of Si-based nano-structures by Focused Ion Beam and ICP/RIE etcher
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-22
繳交日期
Date of Submission
2009-07-23
關鍵字
Keywords
非等向性蝕刻、聚焦離子束、感應耦合電漿、奈米結構、深寬比
aspect ratio, nanostructures, FIB, anisotropic etch, AFM, ICP etcher
統計
Statistics
本論文已被瀏覽 5689 次,被下載 0
The thesis/dissertation has been browsed 5689 times, has been downloaded 0 times.
中文摘要
本論文主要結合聚焦離子束(FIB)之無遮罩直寫優勢及感應耦合電漿蝕刻系統(ICP etcher)之非等向性蝕刻的加工特點於氟基氣體(CF4)中進行矽基材高深寬比奈米結構製造技術的研究,加工材料共包含有單晶矽及熱成長的二氧化矽。主要探討項目包含:(1) 原子力顯微鏡量測等向及非等向性結構真實性探討,(2) FIB直寫測試,包含離子束電流量(beam current)及劑量(ion dose)等,(3) ICP製程參數如:上、下電極功率、氣體混和比例、製程壓力等的影響。參數最佳化後進行線寬100nm以下光柵、圓柱及孔洞等奈米結構的製造。
經製程參數最佳化後可得到單晶矽光柵結構最小線寬約48nm,深寬比可達2.36。二氧化矽光柵結構最小線寬約68nm,高度達410nm,深寬比約可達2。結合兩種不同系統的加工優勢提供另一簡單及快速的奈米加工製造技術。
Abstract
This study is focused on the technique for fabrication of high aspect ratio nanostructures by combining both the advantages of maskless patterning of focused ion beam (FIB) and anisotropic etching of inductively coupled plasma etcher (ICP) in CF4 atmosphere. The materials contain p-type (100) single crystal silicon and thermal silicon dioxide. The study details include:
(1) The reliability of AFM when scanning isotropic and anisotropic nanostructures with high aspect ratio tip in tapping mode.
(2) FIB direct writing test.
(3) The influences of ICP parameters including ICP power, bias power, content of oxygen, and process pressure.
After completion of above-mentioned items, an optimized condition is used to get the anisotropic Si-based high aspect ratio nanostructures of holes array, gratings and cylinder under 100nm.
The smallest line width of single crystal silicon gratings is 48nm, and aspect ratio up to 2.36. The smallest line width of silicon dioxide gratings is about 100nm, height is 410nm and aspect ratio up to 2.36 measured by SEM. By combining both advantages of different systems, we can provide another simple and rapid method for nanofabrication.
目次 Table of Contents
誌謝 I
目錄 II
表目錄 V
圖目錄 VII
摘要 X
ABSTRACT XI
第1章 緒論 1
1-1 奈米製造技術簡介 1
1-2 文獻回顧及應用 7
1-3 研究動機與背景 11
第2章 實驗原理及儀器介紹 12
2-1 聚焦離子束系統 12
2-1-1 聚焦離子束技術介紹 12
2-1-2 聚焦離子束工作原理及應用 16
2-1-3 聚焦離子束加工參數介紹 17
2-2蝕刻製程 18
2-2-1 蝕刻技術簡介 18
2-2-1-1 乾式蝕刻技術簡介 20
2-2-1-2 蝕刻氣體簡介 21
2-2-2 電漿蝕刻原理 21
2-2-2-1 單晶矽蝕刻原理 25
2-2-2-1 二氧化矽蝕刻原理 26
2-2-2-3 氧氣的功用 27
2-2-3 電漿蝕刻機制 28
2-3感應耦合電漿蝕刻系統 32
2-3-1感應耦合電漿蝕刻系統參數介紹 33
第3章 實驗規劃及方法 35
3-1實驗探討項目 35
3-2 AFM量測製程規劃 35
3-3 FIB及ICP蝕刻製程規劃 37
3-1-1清潔步驟 39
3-1-2氧化爐成長SiO2 39
3-1-3濺鍍金屬遮罩層 42
3-1-4 FIB直寫測試 44
3-1-5 ICP蝕刻製程參數探討 44
3-1-6 移除遮罩層 46
第4章 實驗結果與討論 44
4-1 AFM探針量測等向及非等向性結構準確性探討 47
4-1-1 AFM探針量測非等向性結構準確性探討 47
4-1-2 AFM探針量測等向性結構準確性探討 49
4-1-3實驗結果探討 50
4-2 FIB直寫測試 51
4-2-1離子束電流選定 51
4-2-2離子束劑量(ion dose)的選定 52
4-2-3實驗結果探討 53
4-3 ICP製程參數探討及最佳化 56
4-3-1下電極功率的影響 56
4-3-2上電極功率的影響 57
4-3-3氧氣含量的影響 57
4-3-4壓力的影響 58
4-3-5最佳化結果 58
第5章 結論與未來展望 81
5-1 結論 81
5-2 未來展望 82
附錄 84
參考文獻 89
表目錄
表2- 1傳統電容式射頻電漿源與高密度電漿源特性比較 19
表3- 1 FIB加工參數 37
表3- 2 AFM掃描參數 37
表3- 3 ICP等向性結構加工參數 37
表3- 4 ICP非等向性結構加工參數 37
表4- 1不同離子束電流對加工時間及劑量數據 51
表4- 2 FIB加工參數 52
表4- 3 FIB加工劑量及AFM掃描深度數據 53
表4- 4 FIB劑量及AFM掃描寬度數據 44
表4- 5 ICP不同下電極功率時,單晶矽蝕刻率、深寬比及傾角量測數據 61
表4- 6 ICP不同下電極功率時,二氧化矽蝕刻率、深寬比及傾角量測數據 63
表4- 7 ICP不同上電極功率時,單晶矽蝕刻率、深寬比及傾角量測數據 65
表4- 8 ICP不同上電極功率時,二氧化矽蝕刻率、深寬比及傾角量測數據 67
表4- 9 ICP不同氧氣含量時,單晶矽蝕刻率、深寬比及傾角量測數據 69
表4- 10 不同氧氣含量下,二氧化矽蝕刻率、深寬比及傾角量測數據 71
表4- 11 ICP不同壓力下,單晶矽的蝕刻率、深寬比及傾角量測數據 73
表4- 12不同壓力下,二氧化矽蝕刻率、深寬比及傾角量測數據 75
表4- 13不同下電極功率時,線寬縮減率量測數據 76
表4- 14不同上電極功率時,線寬縮減率量測數據 76
表4- 15不同氧氣含量時,線寬縮減率量測數據 77
表4- 16不同壓力時,線寬縮減率量測數據 77
表4- 17 聚昌CIRIE-200 ICP-RIE製程氣體及流量一欄表 85
表4- 18聚昌CIRIE-200 ICP-RIE規格表 87

圖目錄
圖1- 1 SCALPEL(左)、MAPPER(右)系統示意圖 2
圖1- 2 193nm ArF投影式光學結合浸入式微影系統 3
圖1- 3雙重曝光降低圖形間距示意圖 5
圖1- 4奈米壓印流程圖 6
圖1- 5 FIB鎵離子植入單晶矽後再反應離子蝕刻後結果 8
圖1- 6 FIB 2-Step NERIME製造流程及蝕刻後90nmTiN SEM圖 8
圖1- 7 FIB結合ICP/RIE製作奈米結構示意圖 9
圖1- 8以FIB直寫加工後結果(左)及以FIB+ICP加工後結果(右) 10
圖1- 9 FIB結合DRIE製作奈米尖針之流程及SEM圖 10
圖2- 1 FIB操作介面 12
圖2- 2聚焦離子束系統結構圖 13
圖2- 3離子束加工後剖面圖(左)及以數學模擬方式計算出離子束呈現 高斯分佈函數(右) 14
圖2- 4實際以FIB加工單晶矽後的孔洞剖面 15
圖2- 5離子束撞擊物質表面時所產生帶電粒子 16
圖2- 6 FIB加工後之微結構示意圖,左至右依序為:光子晶體光柵、奈米感測器、微透鏡壓印模具、鈦電極結構 17
圖2- 7 FIB掃瞄參數圖 17
圖2- 8電漿蝕刻反應步驟 25
圖2- 9氟原子與單晶矽蝕刻反應機制 26
圖2- 10氟原子與二氧化矽蝕刻反應機制 27
圖2- 11濺擊蝕刻機制 29
圖2- 12純化學蝕刻機制 30
圖2- 13離子輔助蝕刻機制 30
圖2- 14側壁保護蝕刻機制 31
圖2- 15 CF4蝕刻反應機制 31
圖2- 16平面型電感式電漿源線圈電流及感應電磁場示意圖 33
圖3- 1 AR5-NCH-10高深寬比AFM探針示意圖 36
圖3- 2 120×180nm之FIB光柵圖檔及加工後SEM圖 36
圖3- 3 P-type<100>單晶矽 37
圖3- 4熱成長SiO2 37
圖3- 5濺鍍鉻遮罩層 38
圖3- 6 FIB進行圖案化直寫測試 38
圖3- 7 ICP電漿蝕刻測試 38
圖3- 8移除遮罩層 38
圖3- 9熱氧化50nm SiO2 N&K量測圖 40
圖3- 10熱氧化1μm二氧化矽N&K量測圖 41
圖3- 11 FIB進行直寫於100nm鉻遮罩層上視及剖面圖 43
圖3- 12電漿蝕刻後的側壁轉移機制(左)及上圖ICP後結果(右) 43
圖3- 13氟基(左)與(右)氯基氣體電漿蝕刻單晶矽後比較圖 45
圖4- 1 Bias 50w加工120×180nm光柵後SEM與AFM掃描圖 48
圖4- 2 Bias 100w加工120×180nm光柵後SEM與AFM掃描圖 48
圖4- 3 Bias 150w加工120×180nm光柵後SEM與AFM掃描圖 48
圖4- 4 Bias 200w加工120×180nm光柵後SEM與AFM掃描圖 49
圖4- 5 Bias 250w加工120×180nm光柵後SEM與AFM掃描圖 49
圖4- 6 ICP加工等向性結構之SEM及AFM掃描圖 50
圖4- 7 AFM探針掃描溝槽示意圖 51
圖4- 8不同離子束電流下對加工時間及劑量曲線圖 52
圖4- 9 FIB加工於單晶矽表面鉻金屬後之AFM掃描圖 53
圖4- 10 FIB加工於二氧化矽表面鉻金屬後之AFM掃描圖 53
圖4- 11 FIB劑量與AFM掃描深度關係圖 54
圖4- 12 FIB劑量與AFM掃描寬度關係圖 54
圖4- 13 FIB劑量207.6×1015及276.8×1015 ion/cm2加工後SEM圖 55
圖4- 14 離子束劑量276.8×1015 ion/cm2 加工120×180nm光柵圖後SEM剖面及AFM掃描圖 56
圖4- 15圖4-15 bias使用50W蝕刻後結果 60
圖4- 16 bias使用100 W (左)、150W (右)蝕刻後結果 60
圖4- 17 bias使用200W(左)、250W(右)蝕刻後結果 60
圖4- 18 ICP不同下電極功率,單晶矽蝕刻率與深寬比曲線圖 61
圖4- 19 ICP不同下電極功率,單晶矽蝕刻率與傾角曲線圖 61
圖4- 20 bias使用50W蝕刻後結果 62
圖4- 21 bias使用100W(左)、150W(右)蝕刻後結果 62
圖4- 22 bias使用200W(左)、250W(右)蝕刻後結果 62
圖4- 23 ICP不同下電極功率下,二氧化矽蝕刻率與深寬比曲線圖 63
圖4- 24 ICP不同下電極功率下,二氧化矽蝕刻率與傾角曲線圖 63
圖4- 25上電極使用100W蝕刻後結果 64
圖4- 26上電極使用300W(左)、600W(右)蝕刻後結果 64
圖4- 27上電極使用900W(左)、1200W(右)蝕刻後結果 64
圖4- 28 ICP不同上電極功率下,單晶矽蝕刻率與深寬比曲線圖 65
圖4- 29 ICP不同上電極功率下,單晶矽蝕刻率與傾角曲線圖 65
圖4- 30上電極使用100W蝕刻後結果 66
圖4- 31上電極使用300W(左)、600W(右)蝕刻後結果 66
圖4- 32上電極使用900W(左)、1200W(右)蝕刻後結果 66
圖4- 33 ICP不同上電極功率,二氧化矽蝕刻率與深寬比曲線圖 67
圖4- 34 ICP不同上電極功率,二氧化矽蝕刻率與傾角曲線圖 67
圖4- 35添加0 sccm (左)、5sccm O2(右)蝕刻後結果 68
圖4- 36添加10sccm(左)、15sccm(右) O2蝕刻後結果 68
圖4- 37添加20sccm(左)、25sccm(右) O2蝕刻後結果 68
圖4- 38 ICP不同氧氣含量下,單晶矽蝕刻率與深寬比曲線圖 69
圖4- 39 ICP不同氧氣含量下,單晶矽蝕刻率與傾角曲線圖 69
圖4- 40添加0 sccm (左)、5sccm O2(右)蝕刻後結果 70
圖4- 41添加10sccm(左)、15sccm(右) O2蝕刻後結果 70
圖4- 42添加20sccm(左)、25sccm(右) O2蝕刻後結果 70
圖4- 43 ICP不同氧氣含量下,單晶矽蝕刻率與深寬比曲線圖 71
圖4- 44 ICP不同氧氣含量下,單晶矽蝕刻率與傾角曲線圖 71
圖4- 45使用2mTorr蝕刻後結果 72
圖4- 46使用10mTorr(左)、20mTorr (右)蝕刻後結果 72
圖4- 47使用30mTorr(左)、40mTorr(右)蝕刻後結果 72
圖4- 48 ICP不同壓力下,單晶矽的蝕刻率與深寬比曲線圖 73
圖4- 49 ICP不同壓力下,單晶矽的蝕刻率與傾角曲線圖 73
圖4- 50使用2mTorr蝕刻後結果 74
圖4- 51使用10mTorr(左)、20mTorr (右)蝕刻後結果 74
圖4- 52使用30mTorr(左)、40mTorr(右)蝕刻後結果 74
圖4- 53 ICP不同壓力下,二氧化矽的蝕刻率與深寬比曲線圖 75
圖4- 54 ICP不同壓力下,二氧化矽的蝕刻率與傾角曲線圖 75
圖4- 55不同下電極功率與線寬縮減率曲線圖 76
圖4- 56不同上電極功率與線寬縮減率曲線圖 76
圖4- 57不同氧氣含量與線寬縮減率曲線圖 77
圖4- 58不同壓力時與線寬縮減率曲線圖 77
圖4- 59 ICP最佳化之單晶矽光柵、柱狀結構SEM圖 78
圖4- 60 ICP最佳化之單晶矽孔洞陣列SEM圖 78
圖4- 61 ICP最佳化之單晶矽光柵結構SEM圖 78
圖4- 62 ICP最佳化之單晶矽光柵結構SEM圖 79
圖4- 63 ICP最佳化之單晶矽光柵、柱狀結構SEM圖 79
圖4- 64 ICP最佳化之二氧化矽光柵結構SEM圖 79
圖4- 65 ICP最佳化之二氧化矽孔洞結構SEM圖 80
圖4- 66 ICP ICP最佳化之二氧化矽光柵結構SEM圖 80
圖4- 67 ICP最佳化之單晶矽光柵、柱狀結構SEM圖 80
圖4- 68感應耦合電漿蝕刻系統及控制圖 84
參考文獻 References
1. 呂英治、洪敏雄, 科學發展, 2004年2月, 374期, 66~69頁
2. B. J. Lin, “Successors of ArF Water-Immersion Lithography: EUV Lithography, Multi-e-beam Maskless Lithography, or Nanoimprint?”, Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 7(4), Article Number: 040101, October, 2008.
3. 蕭宏, 半導體製程技術導論, 台灣培生教育, ISBN:9789572054840, 2007
4. P. Kruit, “High throughput electron lithography with the multiple aperture pixel by pixel enhancement of resolution concept”, Journal of Vacuum Science & Technology B, Vol. 16(6), pp. 3177-3180, November, 1998.
5. T. R. Groves, and R. A. Kendall, “Distributed, multiple variable shaped electron beam column for high throughput maskless lithography” , Journal of Vacuum Science & Technology B, Vol. 16(6), pp. 3168-3173, November, 1998.
6. J. Warlaumont, “X-ray lithography-On the path to manufacturing”, Journal of Vacuum Science & Technology B, Vol. 7(6), pp. 1634-1641, November, 1989.
7. J. P. H. Benschop, A. J. J. van Dijsseldonk, W. M. Kaiser, and D. C. Ockwell, “EUCLIDES: European EUVL Program”, Journal of Vacuum Science and Technology B, Vol. 17(6), pp. 2978-2981, November, 1999.
8. R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics”, Proceedings of the IEEE, Vol. 96(2), pp. 248-270, February, 2008.
9. 許如宏、林鶴南, 物理雙月刊, 2003年10月, 二十五卷五期, 620~631頁
10. M. Levenson, N. Viswanathan, and R. Simpson, “Improving resolution in photolithography with a phase-shifting mask”, IEEE Transactions on Electron Devices, Vol. 29(12), pp. 1812-1846, December. 1982.
11. S. Y. Chou, P. R. Krauss, P. J. Renstrom“Imprint of sub-25 nm vias and trenches in polymers”, Applied Physics Letters, Vol. 67(21), pp. 3114-3116, November, 1995.
12. K. D. Choquette, and L. R. Harriott, “Dry lithography using focused ion beam implantation and reactive ion etching of SiO2”, Journal of Applied Physics, Vol. 62(25), pp. 3294-3296, June, 1993.
13. H. X. Qian, W. Zhou, J. Miao, L. E. N. Lim, and X. R. Zeng, “Fabrication of Si microstructures using focused ion beam implantation and reactive ion etching”, Journal of Micromechanics and Microengineering, Vol. 18(3), Article Number: 035003, May, 2008.
14. S. F. Gilmartin, K. Arshak, D. Collins, O. Korostynska, and A. Arshak, “Fabricating nanoscale device features using the 2-step NERIME nanolithography process”, Journal of Microelectronic Engineering, Vol. 84(5), pp. 833-836, 2007.
15. M. Villarroya, N. Barniol, and C. Martin, F. Perez-Murano, J. Esteve, L. Bruchhaus, R. Jede, E. Bourhis, J. Gierak, “Fabrication of nanogaps for MEMS prototyping using focused ion beam as a lithographic tool and reactive ion etching pattern transfer” , Journal of Microelectronic Engineering, Vol. 84(5), pp. 1215-1218, May, 2007.
16. P. S. K. Karre, D. D. Cheam, and P. L. Bergstrom,“Realization of Nano-Wires in Quartz using Focused Ion Beam and ICP/RIE Etching Process for Single Electron Transistor Fabrication”, NANO 8th IEEE Conference, pp. 171-174, 2008.
17. Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11(6), pp. 1292-1298, November, 2005.
18. M. Hill, M. Cryan, N. Lim, R. Varrazza, P. Heard, S. Yu, J. Rorison, “Fabrication of Photonic Crystal Structures by Focused Ion Beam Etching”, Proceedings of 2004 6th International Conference, Vol. 2(4), pp. 135-138.
19. H. Abe, M. Yoneda, and N. Fujlwara, “Developments of plasma etching technology for fabricating semiconductor devices”, Japanese Journal of Applied Physics, Vol. 47(3), pp. 1435-1455, 2008.
20. C. S. Song, Z. Y. Wang, Q. W. Chen, J. Cai, and L. T. Liu, “High aspect ratio copper through-silicon-vias for 3D integration”Microelectronic Engineering, Vol. 85(10), pp. 1952-1956, 2008.
21. Y. Utsumi, T. Ikeda, M. Minamitani, and K. Suwa, “Integrated structure of PMMA microchannels for DNA separation by microchip capillary electrophoresis”, Microsystem Technologies, Vol. 14(9), pp. 1461-1466, 2008.
22. C. F. Carlstrom, R. van der Heijden, M. S. P. Andriesse, F. Karouta, R. W. van der Heijden, E. van der Drift, H. W. M. Salemink, “Comparative study of Cl-2, Cl-2/O-2, and Cl-2/N-2 inductively coupled plasma processes for etching of high-aspect-ratio photonic-crystal holes in InP”, Journal of Vacuum Science & Technology B, Vol. 26(5), pp. 1675-1683, 2008.
23. Z. Yu, W. Wu, L. Chen, and S. Y. Chou, “Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint lithography for subwavelength optical applications”, Journal of American Vacuum Society, Vol. 19(2), pp. 2816-2819, 2001.
24. U. D. Zeitner, B. Schnabel, E. B. Kley, F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels”, Journal of Applied Optics, Vol. 38(11), pp. 2177-2181, 1999.
25. A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, Journal of Micromechanics and Microengineering, Vol. 14(4), R15-R34, April, 2004.
26. M. J. Vasile, J. S. Xie, and R. Nassar, “Depth control of focused ion-beam milling from a numerical model of the sputter process”, Journal of Vacuum Science and Technology B, Vol. 17(6), pp. 3085-3090, November, 1999.
27. M. J. Vasile, R. Nassar, and J. S. Xie, “Focused ion beam technology applied to microstructure fabrication” , Journal of Vacuum Science and Technology B, Vol. 16(4), pp. 2499-2505, July, 1998.
28. R. Nassar, M. J. Vasile, W. Zhang, “Mathematical modeling of focused ion beam microfabrication”, Journal of Vacuum Science and Technology B, Vol. 16(1), pp. 109-115, January, 1998.
29. J. E. Murguia, C. R. Musil, M. I. Shepard, H. Lezec, D. A. Antoniadis, and J. Melngailis, “Merging focused ion beam patterning and optical lithography in device and circuit fabrication”, Journal of Vacuum Science and Technology B, Vol. 8(6), pp. 1374-1379, November, 1990.
30. J. H. Daniel, D. F. Moore, and J. F. Walker, “Focused ion beams for microfabrication”, Engineering Science and Education Journal, Vol. 7(2), pp. 53-56, 1998.
31. J. Melngailis, C. R. Musil, E. H. Stevens, M. Utlaut, E. M. Kellogg, R. T. Post, M. W. Geis, and R. W. Mountain, “The focused ion beam as an integrated circuit restructuring tool”, Journal of Vacuum Science and Technology B, Vol. 4(1), pp. 176-180, January, 1986.
32. J. Choi, and J. Kim, “Suspended Nanowire Bridge Fabricated by Focused Ion Beam as a Hydrogen Sensor”, Proceedings of the 3rd IEEE Int. Conf. on, pp. 927-931, January, 2008.
33. S. Cabrini, L. Businaro, M. Prasciolu, A. Carpentiro, D. Gerace, M, Galli, C. Andreani, F. Riboli, L. Pavesi, and E. Di Fabrizio,“Focused ion beam fabrication of one-dimensional photonic crystals on Si3N4/SiO2 channel waveguides”, Journal of Optics A-Pure and Applied Optics, Vol. 8(7), pp. 550-553, 2006.
34. M. Mehta, D. Reuter, A. Melnikov, et al., “Site-selective growth of self-assembled InAs quantum dots on focused ion beam patterned GaAs”, Physica E Low-dimensional Systems and Nanostructures, Vol. 40(6), pp. 2034-2036, April, 2008.
35. C. Santschi, M. Jenke, P. Hoffmann, J. Brugger, “Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching”, Nanotechnology, Vol. 17(11), pp. 2722-2729, 2006.
36. W. Zhou, H. Qian, and L. Wang, “Maskless Fabrication of Highly-Ordered Periodic Nanopillars using FIB and Bitmap Control”, Microscopy and Microanalysis, Vol. 11, pp. 822-823, 2005.
37. J. Kettle, R. T. Hoyle, S. Dimov, and R. M. Perks, “Fabrication of complex 3D structures using Step and Flash Imprint Lithography (S-FIL)”, Journal of Microelectronic Engineering, Vol. 85(5), pp. 853-855, 2008.
38. K. E. Petersen, “Silicon as a Mechanical Material”, the Proceedings of the IEEE, Vol. 70(5), pp. 420-457, 1982.
39. D. L. Kendall, “A new theory for the anisotropic etching of silicon and some underdeveloped chemical micromachining concepts”, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, Vol. 8(4), pp. 3598-3605, 1990.
40. J. W. Coburn, Winters, and F. Harold, “Conductance considerations in the reactive ion etching of high aspect ratio features”, Applied Physics Letters, Vol. 55(26), pp. 2730-2732, December, 1989.
41. C. J. Mogab, “The loading effect in plasma etching”, Journal of the Electrochemical Society, Vol. 124(8), pp. 1262-1268, 1977.
42. S. G. Ingram, “The influence of substrate topography on ion bombardment in plasma etching”, Journal of Applied Physics, Vol. 68(2), pp. 500-504, 1990.
43. F. Laermer, and A. Schilp, “Method for Anisotropically Etching Silicon”, German patent DE4241045, 1994.
44. K. Murakami, Y. Wakabayashi, K. Minami, and M. Esashi, “Cryogenic dry etching for high aspect ratio microstructures in: Proceedings of IEEE MEMS Conference”, Fort Lauderdale, FL, February, pp. 65-70, 1993.
45. M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, E. Smulders, M. J. Gilde, G. Roelofs, J. N. Sasserath, and M. Elwenspoek, “Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures”, IEEE/ASME Journal of Microelectromechanical Systems, Vol. 11(4), pp. 385-401, 2002.
46. 黃俊凱、楊忠諺, 微機電蝕刻製程氣體的選擇, 奈米通訊, 第九卷, 第三期
47. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application”, Vacuum, Vol. 68(2), pp.191-196, October, 2002.
48. C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2-The effect of oxygen additions to CF4 plasmas”, Journal of Applied Physics, Vol. 49(7), pp. 3796-3803, 1978.
49. A. Jacob, U.S. Patent No. 3795557, Mar. 5, 1974.
50. T. Yamaguchi, K. Sasaki, and K. Kadota, “Etching efficiency for Si and SiO2 by CFx+, F+, and C+ ion beams extracted from CF4 plasmas”, Plasma Chemistry and Plasma Processing, Vol. 20(1), pp. 145-157, March, 2000.
51. S. Samukawa, “Highly Selective and Highly Anisotropic SiO2 Etching in Pulse-Time Modulated Electron Cyclotron Resonance Plasma”, Japanese Journal of Applied Physics, Vol. 33(4B), pp. 2133-2138, April, 1994.
52. H. Itoh, T. Miyachi, M. Kawaguchim, Y. Nakao, Tagashirah, “Electron transport coefficients in SF6 and c-C4F8 mixtures”, Journal of Physics D-Applied Physics, Vol. 24(3), pp. 277-282, March, 1991.
53. 張俊彥, 積體電路製程及設備技術手冊, 中華民國產業科技發展協進會, ISBN:9579977666, 1997
54. D. L. Flamm, V. M. Donnelly, J. A. Mucha, “The reaction of fluorine atoms with silicon”, Journal of Applied Physics, Vol. 52(5), pp. 3633-3639, May, 1981.
55. D. Zhang, Kushner, and J. Mark, “Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models”, Journal of Vacuum Science & Technology A, Vol. 19(2), pp.524-538, March, 2001.
56. A. J. van Roosmalen, J. A. G. Baggerman, and S. J. H. Broader, ‘‘Dry Etching for VLSI’’, Plenum Press, New York 1991.
57. D. L. Flamm and G. K. Herb, “Plasma Etching Technology - An Overview”, p.1 in Plasma Etching, An Introduction, Academic Press, San Diego, 1989.
58. S. J. Pearton, and D. R. Norton, “Dry etching of electronic oxides, polymers, and semiconductors”, Plasma Processes and Polymers, Vol. 2(1), pp. 16-37. January, 2005.
59. G. S. Oehrlein and Y. Kurogi, “Sidewall surface chemistry in directional etching processes”, Materials Science & Engineering R-Reports, Vol. 24(4), pp. 153-183, September, 1998.
60. C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2 —The effect of oxygen additions to CF4 plasmas”, Journal of Applied Physics, Vol. 49(7), pp. 3796-3803, July, 1978.
61. H. Nishino, N. Hayasaka, K. Horioka, J. Shiozawa, S. Nadahara, N. Shooda, Y. Akama, A. Sakai, and H. Okano, “Smoothing of the Si surface using CF4/O2 down-flow etching”, Journal of Applied Physics, Vol. 74(2), pp. 1349-1353, July, 1993.
62. 國科會精密儀器發展中心, 真空技術與應用, 全華科技, ISBN:9570286768, 2004
63. M. Puttock, “Problems and solutions for low pressure, high density, inductively coupled plasma dry etch applications”, Surface and Coatings Technology, Vol. 97, pp. 10-14, 1997.
64. NANOSENSORS, http://www.nanosensors.com/
65. N. Belov, and N. Khe, “Using Deep RIE for Micromachining SOI Wafer”, Electronic Components and Technology Conference, 52nd Proceedings, pp. 1163-1166, 2000.
66. K. Yu, M. Feldbaum, T. Pandhumsoporn, and P. Gadgil, “Deep anisotropic ICP plasma etching designed for high Volume MEMS manufacturing”, Proc. SPIE, Vol. 3874, pp. 218-226, 1999.
67. J. K. Bhardwa, J. C. Welch, A. Barker, R. Gunn, L. Lea, S. Watcham, “Advances in deep oxide etch processing for MEMS mask selection”, Surface Technology Systems, pp. 300-307, 2000.
68. W. T. Li, D. A. P. Bulla, J. Love, et al., “Deep dry-etch of silica in a helicon plasma etcher for optical waveguide fabrication”, Journal of Vacuum Science and Technology A, Vol. 23(1), pp. 146-150. January, 2005.
69. M. J. Vasile, Z. Niu,R. Nassar, W. Zhang, and S. Liu, “Focused ion beam milling: Depth control for three-dimensional microfabrication”, Journal of Vacuum Science and Technology B, Vol. 15(6), pp. 2350-2354. 1997.
70. N. P. Hung, Y. Q. Fu,and M. Y. Ali, “Focused ion beam machining of silicon”, Journal of Materials Processing Technology, Vol. 127(1), pp.256-260, 2002.
71. W. X. Li, G. Lalev, S. Dimov, H. Zhao, and D. T. Pham, “A study of fused silica micro/nano patterning by focused-ion-beam”, Applied surface science, Vol. 253(7), pp. 3608-3614. 2006.
72. J. H. Kim, J. H. Boo, and Y. J. Kim, “Effect of stage control parameters on the FIB milling process”, Thin Solid Films, Vol. 516(19), pp. 6710-6714. 2008.
73. M. M. Millard, and E. Kay, “Difluorocarbene Emission Spectra from Fluorocarbon Plasmas and Its Relationship to Fluorocarbon Polymer Formation”, Journal of the electrochemical society, Vol. 129(1), pp. 160-165, 1982.
74. H. W. Lehmann, R. Widmer, “Profile control by reactive sputter etching”, Journal of Vacuum Science and Technology, Vol. 15(2), pp. 319-326. 1978.
75. J. X. Gao, L. P. Yeo, M. B. Chan-Park, J. M. Miao, Y. H. Yan, J. B. Sun, Y. C. Lam, and C. Y. Yue, “Antistick Postpassivation of High-Aspect Ratio Silicon Molds Fabricated by Deep-Reactive Ion Etching”, Journal of Microelectromechanical Systems, Vol. 15(1), pp. 84-93, February, 2006.
76. E. A. Edelberg , A. Perry , N. Benjamin, and E. S. Aydil, “Energy distribution of ions bombarding biased electrodes in high density plasma reactors”, Journal of Vacuum Science and Technology, Vol. 17(2), pp. 506-516, April , 1999.
77. A. Sankaran, and M. J. Kushner, “Fluorocarbon Plasma Etching and Profile Evolution of Porous Low-k Silica”, Applied Physics Letters, Vol. 82(12), pp. 1824-1826, 2003.
78. J. H. Min, G. R. Lee, and J. K. Lee, “Effect of sidewall properties on the bottom microtrench during SiO2 etching in a CF4 plasma”, Journal of Vacuum Science & Technology B, Vol. 23(2), pp. 425-432, March , 2005.
79. W. J. Park, Y. T. Kim, J. H. Kim, S. J. Suh, and D. H. Yoon, “Etching characterization of shaped hole high density plasma for using MEMS devices”, Surface and Coatings Technology, Vol. 193(1), pp. 314-318, April , 2005.
80. G. Villanuevaa, J.A. Plaza, A. Sanchez-Amores, J. Bausells, E. Martinez, J. Samitier and A. Errachid, “Deep reactive ion etching and focused ion beam combination for nanotip fabrication”, Journal of Materials Science and Engineering: C, Vol. 26(2), pp. 164-168, March, 2006.
81. 財團法人自強工業科學基金會, http://edu.tcfst.org.tw/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.234.212.253
論文開放下載的時間是 校外不公開

Your IP address is 3.234.212.253
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code