Responsive image
博碩士論文 etd-0723109-231508 詳細資訊
Title page for etd-0723109-231508
論文名稱
Title
奈米碳管對於原水中黃酸吸附特性之研究
Adsorption Characteristics of Fulvic Acid Derivated from Raw Water onto Carbon Nanotubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-09
繳交日期
Date of Submission
2009-07-23
關鍵字
Keywords
給水工程、黃酸、奈米碳管、吸附
fulvic acid, adsorption, water supply engineering, carbon nano-tube
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
水中有機酸常是淨水場中形成消毒副產物之反應物,因此本研究利用動力及平衡吸附實驗探討商用奈米碳管對水中有機酸之吸附特性及模式解析,吸附試驗之主要影響因子包括有機酸濃度(以黃酸為例)、pH 值、離子強度及溫度。實驗結果顯示,動力吸附試驗約在120 min可達到平衡,吸附量隨著黃酸濃度增加及離子強度減少而增加,動力實驗結果以Modified Freundlich equation、Pseudo-1st-order equation、Pseudo-2nd-order equation三模式套用,結果以Modified Freundlich equation模擬最佳;由Intraparticle Diffusion equation模式解析,顯示吸附過程由孔隙擴散所掌控。等溫吸附試驗在恆溫4 – 45oC範圍內,最大吸附量為26.094 – 20.772 mg/g,試驗數據皆可適用Langmuir及Freundlich模式。熱力學參數ΔGo值為-0.930 – -1.014 kcal/mol、△Ho為-1.561 kcal/mol,△So為-2.02 cal/mol,顯示吸附過程屬於自發性放熱反應。在高黃酸濃度、低離子強度、低pH值及低溫狀態等條件下,為有利於奈米碳管對黃酸之吸附。
Abstract
Organic acids are usually the reactants which proceed in chlorination reaction into products of disinfection by-products in water treatment plant. The purpose of this study is by using tests of kinetics and equilibrium adsorptions to investigate adsorption characteristics and kinetic model evaluations of selected organic acid in solution. We use commercial carbon nano-tube for the adsorbents. The major factors in adsorption tests include the concentration of fulvic acid (a typical organic acid in raw water), pH, ionic strength and temperature. Experiment results exhibited kinetic adsorption reached equilibrium about 120 minutes, the adsorption capacity increased with concentrations increasing of fulvic acid and decreased with ionic strengths. The best selection in kinetic models evaluation, fitting models such as Modified Freundlich equation, Pseudo-1st-order equation and Pesudo-2nd-oder equation is Modified Freundlch equation model. In addition, intraparticle diffusion equation model was fitted well and showed adsorption process was controlled with pore diffusion. The maximum adsorption capacity varied from 26.094 to 20.772 mg/g when temperature ranging from 4 to 45℃. Isotherm adsorption results were fitted on Langmuir and Freundich models. The ΔG° values ranged from -0.930 to -1.014 kcal/mol, ΔH°:-1.561 kcal/mol and ΔS°:-2.02 cal/mol. Thermodynamic parameters indicated that the adsorption is spontaneously and an exothermic reaction. Adsorption of fulvic acid by carbon nano-tube has a good performance when operation conditions of higher fulvic acid concentration, lower ionic strength, lower pH and lower temperature.
目次 Table of Contents
謝誌 I
摘要 II
Abstract III
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1前言 1
1.2研究緣起 2
1.3研究目的 3
第二章 文獻回顧 5
2.1水體中有機物來源及組成 5
2.1.1水體中天然有機物之分類及其性質 5
2.2有機物對淨水工程的影響 9
2.3消毒副產物 11
2.3.1消毒副產物對人體之健康影響 14
2.4淨水場對有機物的控制策略 15
2.5奈米碳管簡介 19
2.6奈米碳管的製備方法 23
2.7奈米碳管之應用 29
2.8吸附原理 33
2.9影響吸附能力因素 36
2.10吸附模式 39
2.10.1動力吸附模式 39
2.10.2等溫吸附模式 41
2.11熱力學模式 44
3.1實驗流程 45
3.2實驗設備 45
3.3實驗藥品 47
3.4黃酸製備及前置實驗 47
3.4.1萃取及製備方法 48
3.4.2定量分析 51
3.4.3定性分析 53
3.5奈米碳管之特性分析 54
3.5.1掃描式電子顯微鏡(SEM) 54
3.5.2穿透式電子顯微鏡(TEM) 55
3.5.3霍氏轉換紅外線光譜(FTIR) 55
3.5.4拉曼光譜儀(Raman) 56
3.5.5比表面積分析儀(BET) 57
3.5.6熱重量分析儀(TGA) 57
3.5.7界達電位分析儀(Zeta potential) 57
3.6吸附實驗步驟 58
3.6.1動力吸附實驗 58
3.6.2平衡吸附實驗:不同pH值 59
3.6.3平衡吸附實驗:不同溫度 60
3.7吸附模式模擬步驟 60
3.8熱力學參數計算步驟 60
第四章 結果與討論 61
4.1黃酸定量定性分析 61
4.2奈米碳管之特性分析 64
4.3動力吸附實驗 70
4.3.1不同黃酸濃度之影響 70
4.3.2不同離子強度之影響 73
4.4平衡吸附實驗 78
4.4.1不同pH值之影響 78
4.4.2不同溫度之影響 79
4.5吸附熱力學之探討 82
第五章 結論與建議 84
5.1結論 84
5.2建議 85
參考文獻 86
附錄-口試委員意見回覆 96
參考文獻 References
Aiken, G.R., McKnight, D.M., Wershaw, R.L.MacCarthy, P. (1985) Humic substances in soil, sediment and water : geochemistry, isolation, and characterization. John Wiley and Sons, New York.
Alarcon-Herrera, M.T., Bewtra, J.K.Biswas, N. (1994) Seasonal variations in humic substances and their reduction through water treatment processes. Canadian journal of civil engineering 21(2), 173-179.
Allen, S.J., McKay, G.Porter, J.F. (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science 280(2), 322-333.
Amy, G.L. (1993) Using NOM characterization for the evaluation of treatment Proceedings of the American Water Works. Assoc. Research Foundation Lyonnaise Des Eaux Dumez Workshop, Chamonix, France, September, 19-22.
Amy, G.L., Sierka, R.A., Bedessem, J., Price, D.Tan, L. (1992) Molecular size distributions of dissolved organic matter. Journal American Water Works Association 84(6), 67-75.
Anna, S.Krystyna, P. (2007) Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology 58(1), 49-52.
Cedergren, M.I., Selbing, A.J., Löfman, O.Källen, B.A.J. (2002) Chlorination byproducts and nitrate in drinking water and risk for congenital cardiac defects. Environmental Research 89(2), 124-130.
Chen, J., LeBoeuf, E.J., Dai, S.Gu, B. (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50(5), 639-647.
Christman, R.F., Norwood, D.L., Millington, D.S., Johnson, J.D.Stevens, A.A. (1983) Identity and yields of major halogenated products of aquatic fulvic acid chlorination. Environmental Science and Technology 17(10), 625-628.
Cicmanec, J.L., Condie, L.W., Olson, G.R.Wang, S.R. (1991) 90-Day toxicity study of dichloroacetate in dogs. Fundamental and Applied Toxicology 17(2), 376-389.
Collins, P.G.Avouris, P. (2000) Nanotubes for electronics. Scientific American 283(38), 62-69.
Dodds, L., King, W., Woolcott, C.Pole, J. (1999) Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology 10(3), 233-237.
Dresselhaus, M.S., Jorio, A., Dresselhaus, G., Saito, R., Filho, A.G.S.Pimenta, M.A. (2002) Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube, pp. [245]/221-[253]/229, Taylor and Francis Inc., Nagano, Japan.
Drikas, M. (1997) Natural Organic Matter - The Curse of the Water Industry. Water 24(5), 29-33.
Edwards, G.A.Amirtharajah, A. (1985) Removing color caused by humic acids. Journal American Water Works Association 77(3), 50-57.
Elkins, K.M.Nelson, D.J. (2002) Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Reviews 228(2), 205-225.
Fattahi, A.Solouki, T. (2003) Using solution equilibria to determine average molecular weight of the Suwannee River fulvic acids. Analytica Chimica Acta 496(1-2), 325-337.
Freundlich, H. (1906) Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie 57, 385-470.
Furusawa, T.Smith, J.M. (1974) Intraparticle mass transport in slurries by dynamic adsorption studies. American Institute of Chemical Engineers Journal 20(1), 88-93.
Gopal, K., Tripathy, S.S., Bersillon, J.L.Dubey, S.P. (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. Journal of Hazardous Materials 140(1-2), 1-6.
Goslan, E.H., Voros, S., Banks, J., Wilson, D., Hillis, P., Campbell, A.T.Parsons, S.A. (2004) A model for predicting dissolved organic carbon distribution in a reservoir water using fluorescence spectroscopy. Water Research 38(3), 783-791.
Grujicic, M., Cao, G.Gersten, B. (2002) An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 94(2-3), 247-259.
Harrington, B.K., Smith, T.W., Parker, L.M.Moore, M.M. (1992) Genotoxic effects of by-products of the chlorination of drinking water. Environmental and Molecular Mutagenesis 19(20), 24.
Hayes, K.F.Leckie, J.O. (1987) Modelling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science 115(2), 564-572.
Hayes, K.F.Leckie, J.O. (1988) Modeling Ionic strength effect on adsorption at hydrous oxides/ solution interface. Journal of Colloid Interface Science 125, 717-726.
Herren-Freund, S.L., Pereira, M.A., Khoury, M.D.Olson, G. (1987) The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicology and Applied Pharmacology 90(2), 183-189.
Ho, Y.S.McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34(5), 451-465.
Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354(6348), 56-56.
Ivancev, V.T., Dalmacijam, B., Tamas, Z.Karlovic, E. (1999) The effect of different drinking water treatment processes on the rate of chloroform formation in the reactions of natural organic matter with hypochlorite. Water Research 33(18), 3715–3722.
Jacangelo, J.G., DeMarco, J., Owen, D.M.Randtke, S.J. (1995) Selected processes for removing NOM: An overview. Journal American Water Works Association 87(1), 64-77.
Jaycock, M.J.Parfitt, G.D. (1981) Chemistry of Interfaces, Ellis Horwood Limited.
Johnson, P.D., Dawson, B.V.Goldberg, S.J. (1998) Cardiac teratogenicity of trichloroethylene metabolites. Journal of the American College of Cardiology 32(2), 540-545.
Journet, C.Bernier, P. (1998) Production of carbon nanotubes. Applied Physics A: Materials Science and Processing 67(1), 1-9.
Karge, H.G.Weitkamp, J. (2008) Adsorption and Diffusion 7.
Keegan, T., Whitaker, H., Nieuwenhuijsen, M.J., Toledano, M.B., Elliott, P., Fawell, J., Wilkinson, M.Best, N. (2001) Use of routinely collected data on trihalomethane in drinking water for epidemiological purposes. Occupational and Environmental Medicine 58(7), 447-452.
Kilduff, J.E.Karanfil, T. (2002) Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry. Water Research 36(7), 1685-1698.
Ko, C.J., Lee, C.Y., Ko, F.H., Chen, H.L.Chu, T.C. (2004) Highly efficient microwave-assisted purification of multiwalled carbon nanotubes. Microelectronic Engineering 73-74(1), 570-577.
Krasner, S., McGuire, M., Jacangelo, J., Patania, N., Reagen, K.Aieta, E. (1989) The occurrence of disinfection by-products in US drinking water. Journal American Water Works Association 81(8), 41-53.
Kuo, S.Lotse, E.G. (1974) Kinetics of phosphate adsorption and desorption by lake sediments. Proceedings of the Soil Science Society of America 38(1), 50-54.
Lagergren, S. (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenkapsakademiens, Handlingar 24, 1-39.
Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society 38(11), 2221-2295.
Li, A., Xu, M., Li, W., Wang, X.Dai, J. (2008) Adsorption characterizations of fulvic acid fractions onto kaolinite. Journal of Environmental Sciences 20(5), 528-535.
Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A.Wang, G. (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701-1703.
Li, Y.H., Di, Z., Ding, J., Wu, D., Luan, Z.Zhu, Y. (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research 39(4), 605-609.
Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D.Wei, B. (2002) Lead adsorption on carbon nanotubes. Chemical Physics Letters 357(3-4), 263-266.
Long, R.Q.Yang, R.T. (2001) Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society 123(9), 2058-2059.
Lu, C.S., Chung, Y.L.Chang, K.F. (2006) Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials 138(2), 304-310.
Lu, C.S.Su, F.S. (2007) Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology 58(1), 113-121.
MacCarthy, P., Klusman, R.W., Cowling, S.W.Rice, J.A. (1995) Water analysis. Analytical Chemistry 67(12), 525R-525R.
Marhaba, T.F.Washington, M.B. (1998) Drinking water disinfection and by-products: history and current practice. Advances in Environmental Research 2, 103–115.
Matthews, B.J.H., Jones, A.C., Theodorou, N.K.Tudhope, A.W. (1996) Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry 55(3-4), 317-332.
Merkulov, V.I., Guillorn, M.A., Lowndes, D.H., Simpson, M.L.Voelkl, E. (2001) Shaping carbon nanostructures by controlling the synthesis process. Applied Physics Letters 79(8), 1178-1178.
Miller, J.H., Minard, K., Wind, R.A., Orner, G.A., Sasser, L.B.Bull, R.J. (2000) In vivo MRI measurements of tumor growth induced by dichloroacetate: implications for mode of action. Toxicology 145(2-3), 115-125.
Mobed, J.J., Hemmingsen, S.L., Autry, J.L.McGown, L.B. (1996) Fluorescence characterization of IHSS humic substances:Total luminescence spectra with absorbance correction. Environmental Science and Technology 30(10), 3061-3065.
Nandi, B.K., Goswami, A.Purkait, M.K. (2009) Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials 161(1), 387-395.
Nikolaou, A.D., Kostopoulou, M.N.Lekkas, T.D. (1999) Organic by-products of drinking water chlorination: a review. Global Nest: The International Journal 1(3), 143-156.
Noblet, J., Schweitzer, L., Ibrahim, E., Stolzenbach, K.D., Zhou, L.Suffet, I.H. (1999) Evaluation of a taste and odor incident on the ohio river, pp. 185-193, Elsevier Ltd, Paris, France.
Odom, T.W., Huang, J.L., Kim, P.Lieber, C.M. (2000) Structure and Electronic Properties of Carbon Nanotubes. The Journal of Physical Chemistry B 104(13), 2794-2809.
Owen, D.M., Amy, G.L., Chowdhury, Z.K., Paode, R., McCoy, G.Viscosil, K. (1995) NOM characterization and treatability. Journal American Water Works Association 87(1), 46-63.
Poots, V.J.P., McKay, G.Healy, J.J. (1976) The removal of acid dye from effluent using natural adsorbents--II Wood. Water Research 10(12), 1067-1070.
Rook, J.J. (1974) Formation of Haloforms During Chlorination of Natural Water. Water Treatment and Examination 23(2), 234-243.
Sawyer, C.N., Perry L. McCartyGene F. Parkin (1994) Chemistry for environmental engineering. McGraw-Hill.
Schnitzer, M.Khan, S.U. (1972) Humic Substances in the Environment. Marel Dekker, New York, 279.
Schnitzer, W. (1976) The chemistry of humic substances. Environmental Biogeochemistry , J. O.Nriague ed.Ann Arbor Science, Ann Arobr, MI 1.
Senesi, N. (1990) Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals : Part II. The fluorescence spectroscopy approach. Analytica Chimica Acta 232, 77-106.
Senesi, N., Miano, T.M., Provenzano, M.R.Brunetti, G. (1991) Characterization, cifferentiation, and classification of humic substances by fluorescence spectroscopy. Soil Science 152(4), 259-271.
Stevens, A.A., Moore, L.A.Miltner, R.J. (1989) Formation and control of non-trihalomethane disinfection by-products. Journal American Water Works Association 81(8), 54-60.
Stevenson, F.J. (1994) Humus chemistry. John Wiley and Sons, New York.
Sun, X.F., Wang, S.G., Liu, X.W., Gong, W.X., Bao, N.Ma, Y. (2008) The effects of pH and ionic strength on fulvic acid uptake by chitosan hydrogel beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects 324(1-3), 28-34.
Tatár, E., Csintalan, E., Mihucz, V.G., Tompa, K., Pöppl, L.Záray, G. (2002) Determination of fulvic acids in water samples of Hungarian caverns. Microchemical Journal 73(1-2), 11-18.
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E.Smalley, R.E. (1996) Crystalline Ropes of Metallic Carbon Nanotubes. Science 273(5274), 483-487.
Thurman, E.M. (1985) Organic Geochemistry of Nature Water, Martinus Nijhoff/Dr. W. Junk Publishers,Dordrecht,the Netherlands, 15-17
Thurman, E.M.Malcolm, R.L. (1983) Structural study of humic substances: New approaches and methods. In Aquatic and Terrestrial Humic Material. Ann Arbor Science, Ann Anbor, MI, 1-23.
Tsai, C.L.Chen, C.F. (2003) Characterization of bias-controlled carbon nanotubes. Diamond and Related Materials 12(9), 1615-1620.
Tsang, S.C., Harris, P.J.F.Green, M.L.H. (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362(6420), 520-522.
Ugurlu, M., Gurses, A., Yalcin, M.Dogar, C. (2005) Removal of phenolic and lignin compounds from bleached kraft mill effluent by fly ash and sepiolite. Adsorption 11(1), 87-97.
Wang, S.G., Gong, W.X., Liu, X.W., Gao, B.Y., Yue, Q.Y.Zhang, D.H. (2006) Removal of fulvic acids from aqueous solutions via surfactant modified zeolite. Chemical Research in Chinese Universities 22(5), 566-570.
Wang, S.G., Liu, X.W., Gong, W.X., Nie, W., Gao, B.Y.Yue, Q.Y. (2007) Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. Journal of Chemical Technology and Biotechnology 82(8), 698-704.
Wang, S.G., Sun, X.F., Liu, X.W., Gong, W.X., Gao, B.Y.Bao, N. (2008) Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms. Chemical Engineering Journal 142(3), 239-247.
Weng, C.H.Pan, Y.F. (2006) Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects 274(1-3), 154-162.
Weng, C.H., Sharma, Y.C.Chu, S.H. (2008) Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Journal of Hazardous Materials 155(1-2), 65-75.
Yang, C.Y., Cheng, B.H., Tsai, S.S., Wu, T.N., Lin, M.C.Lin, K.C. (2000) Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environ Health Perspect 108(8), 765–768.
Yang, K.Xing, B. (2009) Adsorption of fulvic acid by carbon nanotubes from water. Environmental Pollution 157(4), 1095-1100.
成會明,(2004),奈米碳管,五南出版社,台北。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.24.134
論文開放下載的時間是 校外不公開

Your IP address is 3.141.24.134
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code