Responsive image
博碩士論文 etd-0723109-233027 詳細資訊
Title page for etd-0723109-233027
論文名稱
Title
電池電源模組之架構與運轉
Configuration and Operation of Battery Power Modules
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-26
繳交日期
Date of Submission
2009-07-23
關鍵字
Keywords
電池電量、間歇式放電、庫侖累計、電池健康狀態、電池電源模組、電池
coulomb counting, state-of-health (SOH), state-of-charge (SOC), intermittent discharging, battery power module (BPM), Battery
統計
Statistics
本論文已被瀏覽 5764 次,被下載 14
The thesis/dissertation has been browsed 5764 times, has been downloaded 14 times.
中文摘要
本文提出一以多個電池電源模組所建立的電池電源系統。每一電池電源模組係由單一電池搭配一直流轉換器,具備放電調節與電量平衡控制的功能。多個模組串聯運轉可供高壓負載使用,而並聯運轉則可滿足負載所需的功率及續航力。同時並聯及串聯多個模組所形成的電池電源模組陣列可應付較大的負載需求。陣列式電池電源系統中的每個電源模組,雖彼此連接,相互支援,但實際上卻可獨立運轉,易於維護及汰換。
電池電源模組之並聯及串聯運轉依理論及實驗結果進行分析。電池的獨立運轉可避免過度充電及過度放電,提升電池使用壽命。各種不同電池放電態樣之實現可提昇電池的使用效率。此外,藉由某些電池可以選擇性休息及從系統中隔離,運轉時得以實現各種開路量測,有助於估測個別電池之電量及健康狀態。
本電池電源架構中各模組的電池能以間歇式電流態樣放電,經實驗證實電池的放電主要受平均電流所影響。本文藉由電池開路時的電壓量測及考慮開路前的電流及放電深度,提出動態開路電壓電量估測法,可於較短的時間估測電池的電池電量,估測誤差在可接受範圍之內。另一方面,增強型庫侖電量累計法利用放電完畢及充滿時的最大釋出電量及充入電量,評估電池健康狀態,提升傳統庫侖電量累計法的準確度。本研究透過實驗測試,針對鋰離子電池及鉛酸電池模擬實際操作狀況,驗證所提出之電量估測方法的準確度。
Abstract
A novel battery power system configured by the battery power modules (BPMs) is proposed. Each BPM consists of a single battery pack or a battery bank equipped with an associated DC/DC converter. The output ports of BPMs can be connected in series for the high voltage applications, or in parallel to cope with a higher power or energy. For a large scale battery power system, a number of BPMs can be arrayed with combination of series and parallel connections to meet the load requirements. These all configurations allow the BPMs be operated individually. Consequently, the discharging currents of the batteries can be independently controlled, but coordinated to provide a full amount of the load current.
The performances of BPMs connected in both parallel and series at outputs are analyzed theoretically and discussed from the experimental results. Batteries operating independently do not suffer from charge imbalance, and thus can avoid being over-charged or over-discharged, so that the life cycle can be prolonged. Furthermore, sophisticated discharging profiles such as intermittent currents can be realized to equalize the charges and thus to efficiently utilize the available stored energy in batteries. During the operation period, some of the batteries may take rest or be isolated from the system for the open-circuit measurement, facilitating the estimation of the state-of-charge (SOC) and the evaluation of the state-of-health (SOH).
With the benefit of independent operation, the BPMs can be discharged with a scheduled current profile, such as intermittent discharging. The investigation results show that the average current plays the most important role in current discharging. By detecting the battery voltage at the break time, an SOC estimation method based on the dynamically changed open-circuit voltage exhibits an acceptable accuracy in a shorter time with considerations of the previous charging/discharging currents and the depth-of- discharge (DOD). In addition, the coulomb counting method can be enhanced by evaluating the SOH at the exhausted and fully charged states, which can be intended on the independently operated BPMs. Through the experiments that emulate practical operations, the SOC estimation methods are verified on lead-acid batteries and lithium-ion batteries to demonstrate the effectiveness and accuracy.
目次 Table of Contents
Abstract I
Chinese Abstract II
Contents III
List of Figures V
List of Tables VII
List of Nomenclature VIII
Chapter 1 Introduction 1
1-1 Research Background and Motivations 1
1-2 Contributions 6
1-3 Content Arrangement 6
Chapter 2 Conventional Applications of Battery Power 8
2-1 Introductions to Batteries 8
2-2 Conventional Applications 9
2-3 Charge Imbalance of Series Batteries 11
2-4 Review of Charge Equalization Circuits 14
2-5 Related Definitions 17
Chapter 3 Battery Power Modules 20
3-1 Battery Power Modules 20
3-2 Parallel Configuration of Multiple Buck-typed BPMs 24
3-3 Series Configuration of Multiple Boost-Typed BPMs 32
3-4 Arrayed Battery Power Modules 41
3-5 Design Examples and Experiments 44
Chapter 4 Investigation on Intermittent Discharging for Lead-acid Batteries 48
4-1 Intermittent Current Discharging 48
4-1-1 Effect of Operation Frequency 52
4-1-2 Effect of Duty-Ratio 50
4-2 Intermittent Discharging at Different Stages 53
4-3 Two-Stage Current Discharging 57
4-4 Discharging under the Same Average Current 60
Chapter 5 SOC Estimation and SOH Evaluation 61
5-1 Introduction to SOC Estimation 61
5-2 Dynamic Open-Circuit Voltage SOC Estimation 63
5-2-1 Equivalent Circuit of VRLA Battery 63
5-2-2 Open-Circuit Characteristics 65
5-2-3 Dynamics Open-Circuit Voltage Method 70
5-2-4 Verification Experiments 72
5-3 Enhanced Coulomb Counting Method 74
5-4 Determination of Initial SOC 76
5-4-1 Lithium-ion Battery 76
5-4-2 VRLA Battery 80
5-5 Charging and Discharging Corrections 83
5-5-1 Lithium-ion Battery 83
5-5-2 VRLA Battery 85
5-6 Verification of Enhanced Coulomb Counting Method 88
5-6-1 Lithium-Ion Battery 89
5-6-2 VRLA Battery 90
Chapter 6 Conclusions 93
6-1 Conclusions 93
6-2 Discussions 94
6-3 Future Researches 95
References 97
Publication List 101
參考文獻 References
1. T. J. Hammons, J. C. Boyer, S. R. Conners, M. Davies, M. Ellis, M. Fraser, E. A. Holt, and J. Markard, “Renewable Energy Alternatives for Developed Countries,” IEEE Trans. Energy Convers., Vol. 15, No. 4, pp. 481-493, Dec 2000.
2. S. Rahman, “Green Power: What Is It and Where Can We Find It?” IEEE Power Energy Mag., Vol. 1, No.1, pp. 30-37, Jan./Feb. 2003.
3. M. Begovic, A. Pregelj, A. Rohatgi, and C. Honsberg, “Green Power: Status and Perspectives,” Proc. of the IEEE, Dec. 2001, Vol. 89, No. 2, pp. 1734-1743.
4. B. C. Ummels, E. Pelgrum, and W. L. Kling, “Integration of Large-Scale Wind Power and Use of Energy Storage in the Netherlands’ Electricity Supply,” IET Renewable Power Generation, Vol. 2, No. 1, pp. 34-46, Mar. 2008.
5. N. Hatziargyriou and A. Zervos, “Wind Power Development in Europe,” Proc. IEEE, Dec. 2001, Vol. 89, No. 12, pp. 1765-1782.
6. D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and Emerging Developments in Solar Energy,” Solar Energy, Vol. 76, No. 5, pp. 33-43, Jan./Mar. 2004.
7. Fuel Cell handbook, EG&G Technical Services, Inc. Science Applications International Corporation, 2002.
8. A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni “Battery Choice and Management for New Generation Electric Vehicles,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1343-1349, Oct. 2005.
9. E. Karden, P. Bostock, J. Cunningham, E. Schoultz, and D. Kok, “Requirements for Future Automotive Batteries-A Snapshot,” J. Power Sources, Vol. 144, pp.505-512, Jun. 2005.
10. E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, “Energy Storage Devices for Future Hybrid Electric Vehicles,” J. Power Sources, Vol. 168, pp.2-11, May 2007.
11. H. Oman, “Battery Developments That Will Make Electric Vehicles Practical,” IEEE Aerosp. Electron. Syst. Mag., Vol. 1, No. 8, pp. 11-21, Aug. 2000.
12. C. W. Seitz, “Industrial Battery Technologies and Markets,” IEEE Aerosp. Electron. Syst. Mag., Vol. 9, pp. 10-15, May 1994.
13. D. Berndt, “Valve-Regulated Lead-Acid Batteries,” J. Power Sources, Vol. 95, No.1-2, pp. 2-12, Mar. 2001.
14. Lead-Acid Batteries, Hans Bode, John Wiley & Sons, 1977.
15. Handbook of Batteries, David Linden and Thomas B. Reddy, McGraw-Hill 2001.
16. J. Arai, T. Yamaki, S. Yamauchi, T. Yuasa, T. Maeshima, T. Sakai, M. Koseki, and T. Horiba, “Development of a High Power Lithium Secondary Battery for Hybrid Electric Vehicles,” J. Power Sources, Vol. 146, No.1-2, pp. 788-792, Aug. 2005.
17. T. Horiba, T. Maeshima, T. Matsumura, M. Koseki, J. Arai, and Y. Muranaka, “Applications of High Power Density Lithium Ion Batteries,” J. Power Sources, Vol. 146, No.1-2, pp. 107-110, Aug. 2005.
18. R. D. Brost, “Performance of Valve-Regulated Lead Acid Batteries in EV1 Extended Series Strings,” in Proc. BACC Conf., Jan. 1998, pp. 25-29.
19. B. A. Cole, R. J. Schmitt, and J. Szymborski, “Operational Characteristics of VRLA Batteries Configured in Parallel Strings,” in Proc. INTELEC Conf., Oct. 1998, pp. 356-363.
20. R. J. Ball, R. Kurian, R. Evans, and R. Stevens, “Failure Mechanisms in Value Regulated Lead/Acid Batteries for Cyclic Applications,” J. Power Sources, Vol. 109, pp. 189-202, Jun. 2002.
21. R. J. Ball, R. Evans, M. Deven, and R. Stevens, “Characterisation of Defects Observed Within the Positive Grid Corrosion Layer of the Valve Regulated Lead/Acid Battery,” J. Power Sources, Vol. 103, pp. 207-212, Jan. 2002.
22. J. Garche, A Jossen, and H. Döring, “The Influence of Different Operating Conditions, Especially Over-discharge, on the Lifetime and Performance of Lead/Acid Batteries for Photovoltaic Systems,” J. Power Sources, Vol. 67, No. 1-2, pp. 201-212, Jul. 1997.
23. B. K. Mahato, “Mechanism of Capacity Degradation of a Lead-Acid Battery,” in Proc. INTELEC Conf., Jan. 1991, pp. 57-65.
24. C. S. C. Bose and G. W. Mathiesen, “Gas Evolution, Recombination and Grid Corrosion in a VRLA Battery under High Temperature Operating Conditions,” in Proc. INTELEC Conf., Oct. 1997, pp. 13-17.
25. D. Aurbach, “A Review on New Solutions, New Measurements Procedures and New Materials for Rechargeable Li Batteries,” J. Power Sources, Vol. 146, No.1-2, pp. 71-78, Aug. 2005.
26. J. P. Zheng, P. L. Moss, R. Fu, Z. Ma, Y. Xin, G. Au, and E. J. Plichta, “Capacity Degradation of Lithium Rechargeable Batteries,” J. Power Sources, Vol. 146, No.1-2, pp. 753-757, Aug. 2005.
27. M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, and R. J. Staniewicz, “Main Aging Mechanisms in Li Ion Batteries,” J. Power Sources, Vol. 146, No.1-2, pp. 90-96, Aug. 2005.
28. R. A. Leising, M. J. Palazzo, E. S. Takeuchi, and K. J. Takeuchi, “A Study of the Overcharge Reaction of Lithium-Ion Batteries,” J. Power Sources, Vol. 97-98, pp. 681-683, Jul. 2001.
29. S. Seki, Y. Kobayashi, H. Miyashiro, A. Yamanaka, Y. Mita, and T. Iwahori, “Degradation Mechanism Analysis of All-Solid-State Lithium Polymer Secondary Batteries by Using the Impedance Measurement,” J. Power Sources, Vol. 146, No.1-2, pp. 741-744, Aug. 2005.
30. J. Cao, N. Schofield, and A. Emadi, “Battery Balancing Methods: A Comprehensive Review,” in Proc. VPPC Conf., Sep. 2008, pp. 1-6.
31. Y. C. Hsieh, C. S. Moo, and W. Y. Ou-Yang, “A Bi-directional Charge Equalization Circuit for Series-connected Batteries,” in Proc. PEDS Conf., Dec. 2005, pp. 1578-1583.
32. Y. C. Hsieh, K. S. Ng, S. P. Chou, and C. S. Moo, “Charge Equalization Circuit for Discharging Series-Connected Batteries with Regulated Output,” Journal of the Chinese Institute of Engineers, Vol. 31, No. 6, pp. 1083-1087, Sep. 2008.
33. T. Gottwald, Z. Ye, T. Stuart, “Equalization of EV and HEV Batteries with a Ramp Converter,” IEEE Aerosp. Electron. Syst. Mag., Vol. 33, No.1, pp.307-311, Jan. 1997.
34. P. T. Krein, S. West, and C. Papenfuss, “Equalization Requirements for Series VRLA Batteries,” in Proc. BCAA Conf., Jan. 2001, pp. 125-130.
35. B. Lindemark, “Individual Cell Voltage Equalizers (ICE) for Reliable Battery Performance,” in Proc. INTELEC Conf., Nov. 1991, pp.196-201.
36. D. C. Hopkins, C. R. Mosling, and S. T. Hung, “Dynamic Equalization During Charging of Serial Energy Storage Elements,” IEEE Trans. Ind. Applicat., Vol. 29, No. 2, pp. 363-368, Mar./Apr. 1993.
37. H. Giess, “The Operation of VRLA Lead Acid Batteries in Parallel Strings of Dissimilar Capacitor Can we now sin?” in Proc. INTELEC Conf., Oct. 1999, pp. 295-299.
38. P. T. Krein and R. S. Balog, “Life Extension through Charge Equalization of Lead-Acid Batteries,” in Proc. INTELEC Conf., Sep./Oct. 2002, pp. 516-523.
39. S. West and P. T. Krein, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and Life Test Results,” in Proc. INTELEC Conf., Sep. 2000, pp. 439-446.
40. H. Schmidt and C. Siedle, “The Charge Equalizer–A New System to Extend Battery Lifetime in Photovoltaic Systems, U.P.S. and Electric Vehicles,” in Proc. INTELEC Conf., Sep. 1993, Vol. 2, pp. 146-151.
41. S. T. Hung, D. C. Hopkins, and C. R. Mosling, “Extension of Battery Life via Charge Equalization Control,” IEEE Trans. Ind. Electron., Vol. 40, No. 1, pp. 96-104, Feb. 1993.
42. A. Baughman and M. Ferdowsi, “Double-Tiered Capacitive Shuttling Method for Balancing Series-Connected Batteries,” in Proc. VPPC Conf., Sep. 2005, pp. 109-113.
43. A. Baughman and M. Ferdowsi, “Analysis of the Double-Tiered Three-Battery Switched Capacitor Battery Balancing System,” in Proc. VPPC Conf., Sep. 2006, pp. 1-6.
44. A. C. Baughman and M. Ferdowsi, “Double-Tiered Switched-Capacitor Battery Charge Equalization Technique,” IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp. 2277-2285, Jun. 2008.
45. J. W. Kimball, B. T. Kuhn, and P. T. Krein, “Increased Performance of Battery Packs by Active Equalization,” in Proc. VPPC Conf., Sep. 2007, pp. 323-327.
46. C. S. Moo, Y. C. Hsieh, and I S. Tsai, “Charge Equalization for Series-Connected Batteries,” IEEE Trans. Aerosp. Electron. Syst., Vol. 39, No. 2, pp. 704-710, Apr. 2003.
47. C. S. Moo, Y. C. Hsieh, I S. Tsai, and J. C. Cheng, “Dynamic Charge Equalisation for Series-Connected Batteries,” IEE Proc. Electric Power Applicat., Vol. 150, No. 5, pp. 501-505, Sep. 2003.
48. L. Benini, D. Bruni, A. Mach, E. Macii, and M. Poncino, “Discharge Current Steering for Battery Lifetime Optimization,” IEEE Trans. Comput., Vol. 52, pp. 985-995, Aug. 2003.
49. L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “Extending Lifetime of Portable Systems by Battery Scheduling,” Proc. Design, Automation and Test in Europe, March 2001, pp. 197-201.
50. M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-Charge Determination from EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Iron Batteries,” IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2550-2557, Oct. 2007.
51. M. Coleman, W. G. Hurley, and C. K. Lee, “An Improved Battery Characterization Method Using a Two Pulse Load Test,” IEEE Trans. Energy Convers., Vol. 23, No. 2, pp. 708-713, June 2008.
52. P. Sabine, P. Marion, and A. Jossen, “Methods for State-Of-Charge Determination and Their Applications,” J. Power Sources, Vol. 96, pp. 113-120, Jun. 2001.
53. S. Pang, J. Farrell, J. Du, and M. Barth, “Battery State of Charge Estimation,” Proc. American Control Conference, Jun. 2001, pp. 1644-1649.
54. S. Sato and A. Kawamura, “A New Estimation Method of State of Charge Using Terminal Voltage and Internal Resistance for Lead Acid battery,” Proc. Power Conversion Conference, Apr. 2002, Vol. 2, pp. 565-570.
55. “Method of Calculating SOC of Battery for Prevention of Memory Effect,” U.S. Patent 7466138 B2, 2008.
56. “Apparatus and Method for Estimating Battery State of Charge,” U.S. Patent 7197487 B2, 2007.
57. “System and Method for Determining Available Capacity of a Rechargeable Battery,” U.S. Patent 7301305 B2, 2007.
58. W. X. Shen, C. C. Chan, E. W. C. Lo, and K. T. Chau, “Estimation of Battery Available Capacity under Variable Discharge Currents,” J. Power Sources, Vol. 103, pp. 180-187, Jan. 2001.
59. C. S. C. Bose and F. C. Laman, “Battery State of Health Estimation through Coup de Fouet,” in Proc. INTELEC Conf., Oct. 2000, pp. 597-610.
60. I. Buchmann, “Artificial Intelligence Reads Battery State-Of-Health in Three Minutes,” in Proc. BCAA Conf., Jan. 2001, pp. 263-265.
61. P. Singh and D. Reisner, “Fuzzy Logic-Based State-of-Health Determination of Lead Acid Batteries,” in Proc. INTELEC Conf., Oct.2002, pp. 583-590.
62. K. R. Bullock, P. K. Ng, J. L. Valdes, and R. A. Holland, “Defining the Life of Valve-Regulated Lead-Acid Batteries: A New Approach to Accelerated Testing,” in Proc. INTELEC Conf., Oct./Nov. 1995, pp. 78-85.
63. F. Huet, “A Review of Impedance Measurements for Determination of the State-Of-Charge or State-Of-Health of Secondary Batteries,” J. Power Sources, Vol. 70, pp. 59-69, Jan. 1998.
64. A. R. Waters, K. R. Bullock, and C. S. C. Bose, “Monitoring the State Of Health of VRLA Batteries Through Ohmic Measurements,” in Proc. INTELEC Conf., Oct. 1997, pp. 675-680.
65. H. Gu, “Mathematical Modeling in Lead-Acid Battery Development,” in Proc. BCAA Conf., 1991, pp. 47-56.
66. G. Hua and F. C. Lee, “Soft-Switching Techniques in PWM Converters,” IEEE Trans. Ind. Electron., Vol. 42, pp. 595-603, Dec. 1995.
67. D. Divan, “Low Stress Switching for Efficiency,” IEEE Spectr., Vol. 33, pp. 33-39, Dec. 1996.
68. R. L. Steigerwald, R. W. De Doncker, and H. Kheraluwala, “A Comparison of High-Power DC-DC Soft-Switched Converter Topologies,” IEEE Trans. Ind. Applicat., Vol. 3, pp. 1139-1145, Sep. 1996.
69. A. Elasser and D. A. Torrey, “Soft Switching Active Snubbers for DC/DC Converters,” IEEE Trans. Power Electron., Vol. 11, pp. 710-722, Sep. 1996.
70. B. Sahu and G. A. Rincon-Mora, “A Low Voltage, Dynamic, Noninverting, Synchronous Buck-Boost Converter for Portable Applications,” IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 443-452, Mar. 2004.
71. F. C. Munday, “Electronic Engine Management Reference Manual,” Graffiti Publications, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.242.165
論文開放下載的時間是 校外不公開

Your IP address is 3.140.242.165
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code