Responsive image
博碩士論文 etd-0723110-144658 詳細資訊
Title page for etd-0723110-144658
論文名稱
Title
銀添加對二矽化鈦相變化及奈米壓痕機械行為的影響
Effect of additive Ag in TiSi2 thin films for phase transformation and mechanical behavior under nanoindentation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-28
繳交日期
Date of Submission
2010-07-23
關鍵字
Keywords
相變化、銀、二矽化鈦、電阻
electrical resistivity, Ag, phase transformation, Titanium silicides
統計
Statistics
本論文已被瀏覽 5704 次,被下載 541
The thesis/dissertation has been browsed 5704 times, has been downloaded 541 times.
中文摘要
由於二矽化鈦的C54相具有低電阻以及良好的熱穩定性,使得它被廣泛地應用在半導體元件上。在熱處理的製程中,隨著退火溫度的增加,二矽化鈦會從高電阻的C49相轉化成低電阻的C54相。因此,如何有效的降低C49 → C54的相變化溫度,來減少製程上能量耗損進一步降低成本,一直是許多研究者努力的課題。在本實驗中,發現到二矽化鈦的相變化溫度,會受到薄膜中氧含量以及銀添加的影響。因此,藉由改變磁控濺鍍機的背景壓力大小,來調整薄膜中的氧含量使其約為15-20at%,並且利用二矽化鈦與銀的共濺鍍製程,使銀添加量分別達到5%和20%。隨著銀含量的添加,C54相的二矽化鈦生成溫度降低至800oC,而當銀含量為20at%時,C54相的二矽化鈦電阻值會降低到22.9μΩ-cm來保持C54相低電阻值的特性。
此外,藉由奈米壓痕系統,來研究不同二矽化鈦結構(非晶相、以及結晶的C49 相、C54 相),其機械行為與時間的關係。在實驗中利用Kelvin 模型來說明,在固定荷重的情況下位移對時間的關係。其中,滯彈性的部分會隨著不同的荷重速率而改變,當荷重速率增加時,滯彈性所造成的位移影響比例會增加。對非晶相的二矽化鈦而言,由於非晶質結構的缺陷含量較結晶相多,因此滯彈性所造成的影響會增加,同時也代表著結構鬆馳所需要的時間增加。
Abstract
The C54 TiSi2 thin films are widely applied in semiconductor devices due to the low electric resistance and high thermal stability. Through the annealing processing in this study, the metastable C49 TiSi2 with an electric resistivity of 219.3 μΩ-cm transforms to the stable C54 TiSi2 phase at a higher annealing temperature, with a resistivity of 30.5 μΩ-cm. Hence the transformation temperature of C49 → C54 is of great concern in metallization of gates and local interconnections. In this thesis, it is found that the oxygen content and Ag addition impose significant influence on the transformation temperature of C49 → C54. The as-sputtered TiSi2 thin films are confirmed to be amorphous. After annealing at 600oC or 900oC, the silicides would transform to the metastable C49 TiSi2 or C54 TiSi2 phase, respectively. The current transformation temperatures are much higher than 200oC and 600oC for the normal TiSi2 system, due to high oxygen content in the current films (up to 15-20 at% as a result of our old sputtering system). Nevertheless, the co-sputtered TiSi2 thin films with 5 and 20 at% Ag can decrease the formation temperature of C54 TiSi2 phase to 800oC. Compare with the as-sputtered TiSi2 thin films, the desirable electric resistivity of the C54 phase in the 20 at% Ag thin films is also further reduced to 22.9 μΩ-cm. The time-dependent mechanical responses of the amorphous, crystalline C49, and C54 TiSi2 thin films are investigated by room-temperature nanoindentation at the different loading rates ranging from 0.0125 to 5 mN/s. The anelasticity response plays an important role in the current TiSi2 thin films and is found to be sensitive to the loading rate. The displacement of time-dependent anelasticity recorded during the period of hold time increases with increasing loading rate. The anelasticity behavior can be analyzed by the Kelvin model. The as-deposited amorphous phase, with a lower atomic packing density and higher degree of defects and free volumes, exhibits the higher anelasticity deformation and longer relaxation time.
目次 Table of Contents
Content i
List of Tables iii
List of Figures iv
中文摘要 vii
Abstract viii
Chapter 1 Introduction 1
1.1 The development of metal-semiconductor-field-effect-transistor 1
1.2 The characteristics of metallic silicides .2
1.3 The influence of the interfaces in the multilayered-structure devices 3
1.4 The purpose of this study 4
Chapter 2 Background and literature review 6
2.1 Development of metallic silicides 6
2.1.1 Schottky and ohimic contact 7
2.1.2 Low resistivity of metallic silicides 8
2.2 Mechanical properties via nanoindentation 9
2.3 The development of TiSi2 12
2.3.1 Phase transformation of TiSi2 13
2.3.2 Resistance changed from C49 to C54 phase 14
2.5 The addition effect on the phase transformation of titanium disilicide 15
2.6 The plastic time-depend deformation 17
2.7.1. Dislocation glide18
2.7.2. The diffusion creep 18
2.7.3. Harper-Dorn creep 20
2.7.4. Gain boundary sliding 20
2.7.5. The mechanism of indentation creep in ceramics 21
2.7 Elasticity, anelasticity, and plasticity 22
2.7.1. The structure effect in asnelasticity 24
Chapter 3 Experimental procedures 27
3.1 Specimen manufacture 27
3.1.1 Material 27
3.1.2 Substrate preparation 27
3.1.3 Film preparation 28
3.1.4 The thermal annealing process28
3.2 Property measurement and analysis 29
3.2.1 X-ray diffraction 29
3.2.2 X-ray fluorescence spectroscopy 29
3.2.3 Nano-mechanical analysis using nanoindenter 29
3.2.4 Preparation of TEM specimens 30
Chapter 4 Results 31
4.1 The sample preparation and EDS analysis 31
4.2 X-ray diffraction analyses 31
4.2.1 XRD analysis of TiSi2-O2 thin films 31
4.2.2 XRD analysis of TiSi2 thin films 32
4.2.3 XRD analysis of TiSi2-5at%Ag and TiSi2-20at%Ag thin films 32
4.3 X-ray photoelectron spectroscopy analyses 33
4.4 The electrical resistivity analysis 34
4.5 The TEM and EDS analyses 35
4.5.1 The TEM analysis of TiSi2-O2 thin film 35
4.5.2 The TEM analysis and EDS analysis of TiSi2 thin film 35
4.5.3 The TEM analysis and EDS analysis of TiSi2-5at%Ag thin film 36
4.5.4 The TEM analysis and EDS analysis of TiSi2-20at%Ag thin film 37
4.6 The mechanical relaxation behavior of amorphous, C49 and C54 TiSi2 37
Chapter 5 Discussion 40
5.2 The Ag effect on phase transformation C49→C54 42
5.2.1 The transformation reaction in TiSi2-5at%Ag thin film 43
5.2.2 The transformation reaction in TiSi2-20at%Ag thin film 43
Chapter 6 Conclusions 49
References 51
Tables 57
Figures 67
參考文獻 References
[1] S.M. Sze, Semiconductor Devices Physics and Technology, Wiley, New York, (2001).
[2] X. Hong, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, Upper Saddle River, New York, (2000).
[3] S.P. Murarka, Silicides for VLSI Applications, Academic Press, New York, (1983).
[4] K. Maex, Mater. Sci. Eng. R., 11 (1993), pp. 53-153.
[5] S.L. Cheng, H.Y. Huang, Y.C. Peng, L.J. Chen, B.Y. Tsui, C.J. Tsai, S.S. Guo, Y.R. Yang, and J.T. Lin, Appl. surf. sci., 142 (1999), pp. 295-299.
[6] H. Moissan, The Electric Furnace, Edward Arnold, London, (1904).
[7] M.P. Lepselter and J.M. Andrews, Ohmic Contacts to Semiconductor, Electrochem. Soc., Prinecton, New Jersey, (1969), p. 159.
[8] D. Kahng and M.P. Lepselter, Bell System Tech., 44 (1965), p. 1525.
[9] B. Aronsson, T. Lundstron, and S. Rundqvist, Borides, Silicides and Phosphides, Willey, New York, (1965).
[10] K.E. Sundstrom, S. Peterson, and P.T. Tove, Phys. Stat Sol., 20 (1973), p. 653.
[11] J.B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A, 48 (1983), pp. 593-606.
[12] W.C. Oliver, R. Hutchings, and J. B. Pethica, American Society for Testing and Materials, Philadelphia, PA, (1986), pp. 90-108.
[13] M.F. Doerner and W.D. Nix, J. Mater. Res., 1 (1986), p. 601.
[14] J. L. Loubet, J. M. Georges, O. Marchesini, and G. Meille, J. Tribology, 106 (1984), pp. 43-48.
[15] D. Newey, M.A. Wilkins, and H.M. Pollock, J. Phys. E: Sci. Instrum., 15 (1982), pp. 119-22.
[16] D. Stone, W.R. LaFontaine, P. Alexopoulos, T.W. Wu, and C.Y. Li, J. Mater. Res., 3 (1988), pp. 141-147.
[17] W.C. Oliver, MRS Bulletin, XI (1986), p. 15.
[18] W.C. Oliver, C.J. Mchargue, and S.J. Zinkle, Thin Solid Films, 153 (1987), pp. 185-196.
[19] W.C. Oliver and G.M. Pharr, J. Mater. Res., 7 (1992), pp. 1564-1583.
[20] D. Tabor, Proc. R. Soc. A, 192 (1948), p. 247.
[21] I.N. Sneddon, Int. J. Eng. Sci., 3 (1965), p. 47.
[22] J.A. Kittl, Q.Z. Hong, H. Yang, N. Yu, S.B. Samavedam, and M.A. Gribelyuk, Thin Solid Films, 332 (1998), pp. 404-411.
[23] J.A. Kittl and Q.Z. Hong, Thin Solid Films, 320 (1998), pp. 110-121.
[24] Z. Ma, L.H. Allen, and D.D. Allman, J. Appl. Phys., 77 (1995), pp. 4384-4388.
[25] Z. Ma, and L.H. Allen, Phys. Rev. B, 49 (1994), pp. 13501-13511.
[26] R.W. Mann, and L.A. Clevenger, J. Electrochem. Soc., 141 (1994), pp. 1347-1350.
[27] J.B. Lasky, J.S. Nakos, O.J. Cain, and P.J. Geiss, IEEE Trans. Electron Devices, 38 (1991), pp. 262-269.
[28] R.A. Roy, L.A. Clevenger, C. Cabral Jr., K.L. Saenger, S. Brauer, J. Jordan-Sweet, J. Bucchignamo, and G.B. Stephenson, Appl. Phys. Lett., 66 (1995), pp. 1732-1734.
[29] C.L. Gan, K.L. Pey, W.K. Chim, and S.Y. Siah, Solid-State Electron, 44 (2000), pp. 1837-1845.
[30] G. Medeiros-Ribeiro, D.A.A. Ohlberg, D.R. Bowler, R.E. Tanner, G.A.D. Briggs, and R. S. Williams, Surface Sci, 431 (1999), pp, 16-127.
[31] R.W. Bower and J.W. Mayer, Appl. Phys. Lett., 20 (1972), pp. 359-361.
[32] H. Kato and Y. Nakamura, Thin Solid Films, 34 (1976), pp. 135-138.
[33] H.J.W. van Houtum and I.J.M.M. Raaijmakers, Mater. Res. Soc. Symp. Proc., 54 (1986) p. 37.
[34] R. Beyers, D. Coulman, and P. Merchant, J. Appl. Phys., 61 (1987), pp. 5110-5117.
[35] T.C. Chou, C.Y. Wong, and K.N. Tu, J. Appl. Phys., 62 (1987), pp. 2275-2279.
[36] R. Beyers and R. Sinclair, J. Appl. Phys., 57 (1985), pp. 5240-5245.
[37] R.J. Nemanich, H. Jeon, C.A. Sukow, J.W. Honeycutt, and G.A. Rozgonyi, Mater. Res. Soc. Syrup. Proc., 260 (1992), p. 195.
[38] J.A. Kittl, D.A. Prinslow, P.P. Apte, and M.F. Pas, Appl. Phys. Lett., 67 (1995), pp. 2308-2310.
[39] K.L. Saenger, C. Cabral, L.A. Clevenger, R.A. Roy, and S. Wind, J. Appl. Phys., 77 (1995), pp. 5156-5159.
[40] S.C. Tan, L. Liu, Y.P. Zeng, A. See, and Z. X. Shen, J. Electrochem. Soc., 152 (2005), pp. G754-G757.
[41] R.W. Mann, G.L. Miles, T.A. Knotts, D.W. Rakowski, L.A. Clevenger, J.M. E. Harper, F.M. d’Heurle, and C Cabral, Appl. Phys. Lett., 67 (1995), pp. 3729-3731.
[42] A. Mouroux, S.L. Zhang, W. Kaplan, S. Nygren, M. Ostling, and C. S. Petersson, Appl. Phys. Lett., 69(1996), pp. 975-.
[43] A. Mouroux, S.L. Zhang, and C.S. Petersson, Phys. Rev. B 56 (1997), pp. 10614-.
[44] C. Cabral, Jr., L.A. Clevenger, J.M. E. Harper, F.M. d’Heurle, R.A. Roy, K.L. Saenger, G.L. Miles, and R.W. Mann, J. Mater. Res., 12 (1997), pp. 304-.
[45] J. Aberg, S. person, P.-E. Hellberg, S.L. Zhang, U. Smith, F. Ericson, M. Engstrom, and W. Kaplan, Appl. Phys. Lett., 90 (2001), pp. 2380-2388.
[46] H. J. Goldschmidt, Interstitial Alloys, Butterworths, London, (1967), pp. 322–330.
[47] I. Engstrom and B. Lonnberg, J. Appl. Physi., 63 (1998), pp. 4476-.
[48] F Bonoli, M Iannuzzi, L Miglio, and V Meregalli , Appl. Phys. Lett., 73 (1998), pp. 1964-1966.
[49] S.L. Zhang, F.M. d'Heurle, C. Lavoie, C. Cabral, and J.M.E. Harper, Appl. Phys. Lett.,73 (1998), pp. 312-314.
[50] L.F. Mattheiss, Phys. rev. B, 45 (1992), pp. 3252-3259.
[51] S.L. Zhang, Z.B. Zhang, D.Z. Zhu, and H.J. Xu, J. Appl. Physi., 89 (2001) pp. 1641-1646.
[52] S.L. Zhang and F.M. d’Heurle, Appl. Phys. Lett., 76 (2000), pp.1831-1832.
[53] M.E. Kassner, M.T. Perez-Prado, Prog. mater. sci., 45 (2000), pp.1-102.
[54] T.G. Langdon, Mater. sci. eng. A, 283 (2000), pp. 266-273.
[55] F.R.N. Nabarro, In: Report of conference on the soils. London: The Physical Society, (1948) p. 75.
[56] C. Herring, J. Appl. Physi., 21 (1950), pp. 437.
[57] T.G. Langdon, Acta metall. Mater., 42 (1994), pp. 2437-2443.
[58] R.L. Coble J. Appl. Physi., 34 (1963), pp. 1679.
[59] S.I. Warshau, and F.H. Norton, J. Am. Ceram. Soc. 45 (1962), pp. 479.
[60] I.M. Bernstein, Trans AIME, 239 (1967), pp. 1518.
[61] B. Burton, and G.W. Greenwood., J. Met. Sci., 4 (1970), p. 215.
[62] I.G. Crossland, In: Physical metallurgy of reactor fuel elements. London: Metals Soc, (1975), p. 66.
[63] I.G. Crossland, B. Burton, and B.D. Bastow, Metal. Sci., 9 (1975), p. 327.
[64] D.J. Towle, and H. Jones. Acta Metall., 24 (1975), p. 399.
[65] E.M. Passmore, R.H. Duff, and T.S. Vasilos., J. Am. Ceram. Soc., 49 (1966), p. 594.
[66] T.G. Langdon, and J.A. Pask, Acta Metall., 18 (1970), p. 505.
[67] T. Sritharan, and H. Jones Acta Metall., 27 (1979), p. 1293.
[68] J. Fiala, J. Novotny, and Cadek, J. Mater. Sci. Eng., 60 (1983), p. 195.
[69] D.B. Knorr, R.M. Cannon, R.L. Coble. Acta Metall., 37 (1989), p. 2103.
[70] B. Burton, and G.W. Greenwood, Acta Metall., 18 (1970), p.1237.
[71] K.E. Harris, and A.H. King, Acta Mater., 46 (1998), p. 6195.
[72] R. Folweiler, J. Appl. Phys., 21 (1950), p. 437.
[73] S.I. Warshau, and F.H. Norton, J. Am. Ceram. Soc., 45 (1962), p. 479.
[74] N.F. Mott, Proc. Roy. Soc. A, 220 (1953), p. 1.
[75] H. J. Frost and M. F. Ashby, Deformation-MechanismMaps. Pergamon Press, Oxford (1982).
[76] J. Weertman, J. Appl. Phys., 26 (1955), p. 1213.
[77] J. Harper, and J.E. Dorn, Acta Metall., 5 (1957), p. 654.
[78] P. Yavari, D.A. Miller, and T.G. Langdon, Acta Metall. 30 (1982), p. 871.
[79] T.G. Langdon, Acta Metall. Mater., 42 (1994), pp. 2437-2443.
[80] W.B. Li, J. L. Henshall, R.M. Hooper, and K.E. Easterling, Acta Metall. Mater., 39 (1991), pp. 3099-3110.
[81] C. Zener, Il Nuovo Cimento 7 (1958), pp. 544-568.
[82] A.S. Nowick, and B.S. Berry, Anelastic relaxiation in crystalline solids, New York, (1972).
[83] S. Yang, Y.W. Zhang, and K. Zeng, J. Appl. Physi., 95 (2004), pp. 3655-3666
[84] P.H. Gaskell, J. Non-Cryst. Solids, 1003 (2005), p. 351.
[85] J.D. Bernal, and J. Mason, Nature, 910 (1960), p. 188.
[86] D.B. Miracle, T. Egami, K.M. Flores, and K.F. Kelton, MRS bull., 32 (2007), pp. 629-634.
[87] T. Egami, Rep. Prog. Phys., 1601 (1984), p. 47.
[88] H. Tanimoto, S. Sakai, and H. Mizubayashi, Mater. sci. eng. A, 370 (2004), pp. 135-141.
[89] H. Gleiter, Prog. Mater. Sci., 33 (1989), p. 223.
[90] Y. Fu, H. Du, S. Zhang, and W. Huang, Mater. Sci. Eng. A, 403 (2005), p. 25.
[91] R. Beyers, J. Appl. Phys., 56 (1984), p. 147.
[92] M.A. Taubenblatt, C.R. Helms, J. Appl. Phys., 53 (1982), p. 6308.
[93] A.I. Taub, F. Spaepen, J. Mater. Sci., 16 (1981), p. 3087.
[94] K.W. Park, C.M. Lee, M.R. Lee, E. Fleury, and M.L. Falk, Appl. Phys. Lett., 94 (2009), p. 0219071.
[95] W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, and Y.Z. He, Mater. Sci. Eng. A, 478 (2008), p. 371.
[96] J.H. Huang, K.W. Lau, and G.P. Yu, Surf. Coat. Technol., 191 (2005), p. 17.
[97] P.W. Wang, Appl. surf. sci., 120 (1997), pp. 291-298.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code