Responsive image
博碩士論文 etd-0723110-145121 詳細資訊
Title page for etd-0723110-145121
論文名稱
Title
台灣眼鏡蛇毒心臟毒素2及4細胞膜破壞活性之分子機制
Molecular events determine membrane-damaging activity of Taiwan cobra CTX2 and CTX4
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-20
繳交日期
Date of Submission
2010-07-23
關鍵字
Keywords
心臟毒素、膜破壞活性
EYPC, EYPG, CTX2, CTX4, membrane-damaging activity, EYPE
統計
Statistics
本論文已被瀏覽 5662 次,被下載 1976
The thesis/dissertation has been browsed 5662 times, has been downloaded 1976 times.
中文摘要
先前研究指出,心臟毒素之細胞膜破壞活性與帶負電荷之磷脂質有相關性。 因此,為探討帶電性磷脂質對心臟毒素活性所扮演的角色,本論文以台灣眼鏡蛇毒心臟毒素,與雙性磷脂質之交互作用作為研究主軸。 我們發現,心臟毒素2及心臟毒素4皆可破壞雙性磷脂質之微脂體,且兩者對微脂體之破壞活性,亦可受磷脂質的成分不同所影響。 在EYPC、EYPC/EYPE、EYPC/EYPG組成之磷脂質膜中,心臟毒素2對微脂體之破壞活性大於心臟毒素4的破壞活性。 此外,心臟毒素2和心臟毒素4對EYPC及EYPC/EYPE組成之微脂體,其破壞活性均大於EYPC/EYPG之微脂體。 利用PDA的顏色變化測定磷脂質膜的擾動程度,並藉rhodamine的自我淬熄特性,用以觀測rhodamine標定心臟毒素的oligomerization現象,以及與帶有螢光標定之微脂體作用,結果顯示,心臟毒素2及心臟毒素4與不同組成之磷脂質膜結合時,其作用方式並不相同。 雖然心臟毒素2及心臟毒素4,對三種磷脂質膜具有相似的親和性,但兩者與微脂體結合反應的可逆性卻不相同。 相較於心臟毒素4,抗心臟毒素抗體明顯抑制心臟毒素2之細胞膜破壞活性。 有鑑於心臟毒素2及心臟毒素4結構不同,綜合上述本研究成果顯示,心臟毒素2及心臟毒素4具有不同細胞膜破壞活性,肇因於兩者與磷脂質膜具有不同結合方式,同時活性大小受到微脂體之磷脂質組成的影響。 此外,心臟毒素對磷脂質膜之破壞活性,並不全然與帶負電之磷脂質相關。
Abstract
Previous studies show that membrane-damaging activity of cardiotoxins (CTXs) is associated with their binding with anionic phospholipids on membrane. In order to examine this proposition, studies on the interaction between Taiwan cobra CTXs and zwitterionic phospholipids were conducted in the present study. Although membrane-damaging activity of CTX2 and CTX4 was affected by phospholipid compositions, CTX2 and CTX4 were able to induce membrane permeability of zwitterionic phospholipid vesicles. CTX2 showed a higher membrane-damaging activity toward egg yolk phosphatidylcholine (EYPC), EYPC/egg yolk phosphatidylethanolamine (EYPE) or EYPC/egg yolk phosphatidylglycerol (EYPG) than CTX4 did. Moreover, CTX2- and CTX4-induced membrane permeability of EYPC and EYPC/EYPE vesicles was higher than that of EYPC/EYPG vesicles. CTX2 and CTX4 displayed different membrane-bound mode in binding with EYPC, EYPC/EYPE and EYPC/EYPG vesicles as revealed by N-( fluorescein - 5 - thiocarbamoyl) - 1, 2 - dihexadecanoyl-phosphatidyl ethanolamine fluorescence enhancement, color transformation of phospholipids/polydiacetylene membrane assay and rhodamine-self quenching assay. CTX2 and CTX4 showed a similar binding affinity with phospholipid vesicles, but the reversibility in binding with phospholipid vesicles differed between CTX2 and CTX4. Compared with that of CTX4, membrane-damaging activity of CTX2 was markedly inhibited by anti-CTX antibodies. Taken together with the finding that gross conformation of CTX2 and CTX4 differs, our data suggest that membrane-damaging activity of CTX2 and CTX4 critically depends on their membrane-bound mode and is affected by phospholipid composition. Moreover, the ability of CTX to induce membrane permeability is not exclusively attributed to the binding with anionic phospholipids.
目次 Table of Contents
壹、英文摘要 ………………………………………………………2
貳、中文摘要 ………………………………………………………4
參、前言 ……………………………………………………………6
肆、實驗材料 ………………………………………………………14
伍、材料與方法 ……………………………………………………15
陸、結果 ……………………………………………………………25
柒、討論 ……………………………………………………………35
捌、參考文獻 ………………………………………………………41
玖、圖表 ……………………………………………………………50
參考文獻 References
Arnt, L., Rennie, J.R., Linser, S., Willumeit, R. and Tew, G.N. (2006) Membrane activity of biomimetic facially amphiphilic antibiotics. J. Phys. Chem. B. 110, 3527-3532.
Beney, L., Perrier-Cornet, J.M., Hayer, M. and Gervais, P. (1997) Shape modification of phospholipids vesicles induced by high pressure: influence of bilayer compressibility. Biophys. J. 72, 1256-1263.
Bilwes, A., Rees, B., Moras, D., Menez, R. and Menez, A. (1994) X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membrane. J. Mol. Biol. 239, 122-136.
Chang, R., Nir, S. and Poulain, F.R. (1998) Analysis of binding and membrane destabilization of phospholipids membranes by surfactant apoprotein B. Biochim. Biophys. Acta. 1371, 254-264.
Chien, K.Y., Chiang C.M., Hseu Y.C., Vyas A.A., Rule G.S. and Wu W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. Biol. Chem. 269, 14473-14483.
Chiou S.H., Hung C.C., Hung H.C., Chen S.T., Wang K.T. and Yang C.C. (1995a) Sequence comparison and computer modeling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem. Biophys. Res. Commun. 206, 22-32.
Chiou, S.H., Chuang, M.H., Hung, C.C., Huang, H.C., Chen, S.T., Wang, K.T. and Ho, C.L. (1995b) Inhibition of protein kinase C by snake venom toxin: comparison of enzyme inhibition, lethality and hemolysis among different cardiotoxin isoforms. Biochem. Mol. Bio. Int. 35, 1103-1112.
Chiou, Y.L., Kao, P.H., Lin, W.H., Lin, S.R. and Chang, L.S. (2010) Roles of lysine residues and N-terminal alpha-amino acid group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipids vesicles. Toxicon 55, 256-264.
Chiou, Y.L., Wang, J.J. and Chang, L.S. (2009) Effect of cholesterol on membrane-damaging activity of Naja nigricollis tosin γ toward phospholipids vesicles. Toxicon 54, 772-778.
Clijan, S., Krulsich, T.A., Mondrus, K.R. and Seto-Young, D. (1986) Membrane lipid composition of obligately and faculatatively alkalophilic strains of Bacillus spp. J. Bacteriol. 168, 334-340.
Cronan, J.E. (2003) Bacterial membrane lipids: where do we stand? Annu. Rev. Microbiol. 57, 203-224.
Desormeaux, A., Laroche, G., Bougis, PE. and Pezolet, M. (1992) Characterization by infrared spectroscopy of the interaction of a cardiotoxin with phosphatidic acid and with binary mixtures of phosphatidic acid and phosphatidylcholine. Biochemistry 31, 12173-12182.
Dowhan, W. (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199-232.
Dubovskii, P.V., Dementieva, D.V., Bocharov, E.V., Utkin, Y.N. and Arseniev, A.S. (2001) Membrane binding motif of the P-type Cardiotoxin. J. Mol. Biol. 350, 174-149.
Dubovskii, P.V., Lesovly, K.M., Dubiunyi, M.A., Utkin, Y.N. and Arseniev, A.S. (2003) Interaction of the P-type cardiotoxin with phospholipids membranes. Eur. J. Biochem. 270, 2038-2046.
Eckhardt, E.R.M., Moschetta, A., Renooij, W., Goerdayal, S.S., van Berge-Henegouwen, G.P. and van Erpecum, K.J. (1999) Asymmetric distribution of phosphatidylcholine and sphingomyelin between micellar and vesicular phases: potential implications for canalicular bile formation. J. Lipid. Res. 40, 2022-2033.
Efremov, R.G., Volynsky, P.E., Nolde, D.E., Dubovskii, P.V. and Arseniev, A.S. (2002) Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys. J. 83, 144-153.
Epand, R.F., Schmitt, M.A., Gellman, S.H. and Epand, R.M. (2006) Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides. Biochim.
Biophys. Acta. 1757, 1343-1350.
Feofanov A.V., Sharonov G.V., Astapova M.V., Rodionov D.I., Utkin Y.N. and Arseniev A.S. (2005) Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem.J. 390, 11-8.
Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G. and Hsiao, C.D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 24, 21980-21988.
Frezard, F. and Garniersuillerot, A. (1998) Permeability of lipid bilayer to anthracyline derivatives–role of the bilayer composition and
of the temperature. Biochim. Biophys. Acta. 1389, 13-22.
Hamai, C., Yang, T., Kataoka, S., Cremer, P.S. and Musser, S.M. (2006) Effect of average phospholipids curvature on supported bilayer
formation on glass by vesicle fusion. Biophys. J. 90, 1241-1248.
Hayashi K., Takechi M., Saki T. and Lee C.Y. (1975) Amino acid sequence of cardiotoxin-analogue I from the venom of Naja naja atra.
Biochem Biophys. Res. Commun. 64, 360-366.
Hung C.C., Wu S.H. and Chiou S.H. (1993) Sequence
characterization of cardiotoxins from Taiwan cobra:isolation of a new isoform. Biochem. Mol. Biol. Inter. 31, 1031-1040.
Jang J.Y., Krishnaswamy T., Kumar S., Jayaraman G., Yang P.W., Yu C. (1997) Comarison of the hemolytic activity and solution structures
of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry 36, 14635-41.
Kaneda N. and Hayashi K. (1983) Separation of cardiotoxins (cytotoxin)from the venoms of Naja naja and Naja naja atra by reversed phase high-performance liquid chromatography. J. Chromatogr. 281, 389-392.
Kao, P.H., Lin, S.R. and Chang, L.S. (2009) Differential binding to phospholipids bilyers modulates membrane-damaging activity of Naja naja atra cardiotoxins. Toxicon 54, 321-328.
Kao, P.H., Lin, S.R., Wu, M.J. an Chang, L.S. (2009) Membrane-bound conformation and phospholipids components modulate membrane-damaging activity of Taiwan cobra cardiotoxins.
Toxicon 53, 512-518.
Kol, M.A., van Laak, A.N., Rijkers, D.T., Killian, J.A., de Kroon, A.I.and de Kruijff, B. (2003) Phospholipid flop induced by transmembrane peptides in model membrane is modulated by lipid
composition. Biochemistry 42, 231-237.
Kolusheva, S., Boyer, L. and Jelinek, R. (2000a) A colorimetric assay for rapid screening of antimicrobial peptides. Nat. Biotechnol. 18,
225-227.
Kolusheva, S., Shahal, T. and Jelinek, R. (2000b) Peptide-membrane interactions studied by a new phospholipids/polydiacetylene colorimetric vesicle assay. Biochemistry 39, 15851-15859.
Kolusheva, S.m., Lecht, S., Derazon, Y., Jelinek, R. and Lazarvovici, P.(2008) Pardaxin, a fish toxin peptide interaction with a biomimetic
phospholipids/polydiacetylene membrane assay. Peptides 29,1620-1625.
Kumar T.K.S., Lee C.S. and Yu C. (1996) A case study of cardiotoxin III from the Taiwan cabra(Naja naja atra)solution structure and other physical properties. Adv. Exp. Med. Biol. 391, 115-129.
Lee, C.Y. and Chen, Y.M. (1977) Central neurotoxicity of cobra neurotoxin, cardiotoxin and phospholipase A2. Toxicon 15, 395-401.
Liou, R.F., Chang, W.C., Chu, S.J. and Chen, Y.H. (1993) Snake venom cardiotoxin can rapidly induce actin polymerization in intact platelets. Biochem. J. 290, 591-594.
Lohner, K. and Prenner, E. J. (1999) Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of
antimicrobial peptides with membrane-mimetic systems. Biochim.Biophys. Acta. 1462, 141-156.
Marrink, S.J. and Mark, A. (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J. Am. Chem. Soc.125, 11144-11145.
Morein, S., Andersson, A.S., Rilfors, L. and Lindblom, G. (1996) Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structure.J. Biol. Chem. 271, 6801-6809.
Narita K. and Lee C.Y. (1970) The amino acid sequence of cardiotoxin form the Formosan cobra. Biochem. Biophys. Res.Commun. 41, 339-343.
Ou Y.J., Leung Y.M., Huang S.J. and Kwan C.Y. (1997) Dual effect of extracellular Ca2+ on cardiotoxin-induced cytotoxicity and cytosolic
Ca2+ changes in cultured single cells of rabbit aortic endotjelium.Biochem. Biophys. Acta. 1330, 29-38.
Pagano, R.E. and Sleight, R.G. (1985) Defining lipid transport pathways in animal cells. Science. 229, 1051-1057.
Pankov, R., Markovska, T., Antonov, P., Ivanova, L. and Momchilova, A. (2006) Influence of embrane phospholipids composition and structural organization on spontaneous lipid transfer between
membranes. Gem. Physiol. Biophys. 25, 313-324.
Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y.S., Chiang, C.M., Chi, L.M.and Wu, W.G. (1997) Heparin and heparin sulfate bind to snake
cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J. Biol. Chem. 272, 1484-1492.
Pucadyil, T.J. and Chattopadhyay, A. (2006) Effect of cholesterol on lateral diffusion of fluorescent lipid in native hippocampal membranes. Chem. Phys. Lipids. 143, 11-21.
Qin, S., Pande, A.H., Nemec, K.N., He, X. and Tatulian, S.A. (2005)
Evidence for the regulatory role of the N-terminal helix of secretory phospholipase A2 from studies on native and chimeric proteins. J.
Biol. Chem. 280, 36773-36783.
Raynor, R.L., Zheng, B. and Kuo, J.F. (1991) Membrane interactions of amphiphillic polypeptides mastoparan, melittin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca2+/calmodulin-dependent protein kinase II and synaptosomal membrane Na, K-ATPase, and Na+ pump and differentiation of HL60
cells. J. Biol. Chem. 266, 2753-2758.
Rukmini, R., Rawat, S.S., Biswas, S.C. and Chattopadhyay, A. (2001) Cholesterol organization in membrane at low concentrations: effects
of curvature stress and membrane thickess. Biophys. J. 81, 2122-2134.
Schroeder, R.J., Ahmed, S.N., Zhu, Y., London, E. and Brown, D.A.(1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J. Biol. Chem. 273, 1150-1157.
Semple, S.C., Chonn, A. and Cullis, P.R. (1998) Interactions of liposomes and lipid-based carrier systems with blood proteins-relation to clearance behavior in vivo. Adv. Drug. Deliv. Rev. 32, 3-17.
Struck, D.K. and Pagano, R.E. (1980) Insertion of fluorescent phospholipids into the plasma membrane of mammalian cell. J. Biol. Chem. 255, 5404-5410.
Sue, S.C., Chien, K.Y., Huang, W.N., Abraham, J.K., Chen, K.M. and Wu, W.G. (2002) Heparin binding stabilizes the membrane-bound from of cobra cardiotoxin. J. Biol. Chem. 277, 2666-2673.
Sue, S.C., Jarrell, H.C., Brisson, J.R. and Wu, W.G. (2001) Dynamic characterization fo the water binding loop in the P-type cardiotoxin:
lmplication for the role of the vound water molecule. Biochemistry 40, 12782-12794.
Tzeng, W.F. and Chen, Y.H. (1988) Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca2+ influx of inhibition of non-lysosomal proteinases. Biochem. J.256, 89-95.
Wall, J., Golding, C., van Veen, M. and O’Shea, P.S. (1995) The use of fluoresceinphosphatidylethanolamine as a real-rime probe for peptide-membrane interaction. Mol. Membr. Biol. 12, 181-190.
Wang, C.H., Liu, J.H., Lee, S.C., Hsiao, C.D. and Wu, W.G. (2006) Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide-cardiotoxin complex structure in a membrane-like environment suggests a lipid–dependent cell-penetrating mechanism for membrane binding polypeptides. J.Biol. Chem. 281, 656-667.
Wikstrom, M., Xie, J., Bogdanov, M., Mileykovskaya, E., Heacock, P.,Wieslander, A. and Dowhan, W. (2004) Monoheucosyldiacylhlycerol, a foreign lipid, can substitute for phosphatidylethanolamine in Escherichia coli. J. Biol. Chem. 279,10484-10493.
Wu S.S., Tseng M.J. and Wang K.T. (1982) Separation of four cardiotoxins of Taiwan cobra (Naja naja atra)by reversed phase high-performance liquid chromatography. J. Chromatogr. 242,396-373.
Wu, C.Y., Chen, W.C., Ho, C.L., Chen, S.T., Wang, K.T. (1997) The role of the N-terminal leucine residue in snake venom cardiotoxin II (Naja naja atra). Biochem. Biophys. Res. Commun. 233, 713-716.
Zhang, Y. and Tu, A.T. (2002) The effect of snake venoms and their components on adrenomedullary cells: catecholamine efflux and cell damage. Neurotoxicology 23, 273-279.
Zusman, N., Miklas, T.M., Graves, T., Dambach, G.E. and Hudson, R.A.(1984) On the interaction of cobra venom protein cardiotoxin with erythrocytes. Biochem. Biophys. Res. Commun. 124, 629-636.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code