Responsive image
博碩士論文 etd-0723112-105302 詳細資訊
Title page for etd-0723112-105302
論文名稱
Title
胺基膦化物鋯、鉿金屬錯合物之合成及反應性探討
Synthesis and Reactivity Study of Diarylamido-phosphino Zirconium and Hafnium complexes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
185
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-08
繳交日期
Date of Submission
2012-07-23
關鍵字
Keywords
鋯、鉿
alkylidene, zirconium, hafnium, ring-opening metathesis polymerization, abstraction
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
一系列以[PNP]為配位基成功的合成四價鋯與鉿錯合物,丁基鋰先與[PNP]H形成[PNP]Li,再加入MCl4(THF)2 (M = Zr, Hf)即可成功合成產率約60%。透過格林那試劑成功得到一系列烷基取代的四價金屬錯合物[PNP]MR3 (R = Me, CH2SiMe3)或是[PNP]M(CH2SiMe3)2(E) (E = Cl, Me),透過取代基的立體效應,可以控制並合成特定烷基取代的金屬錯合物。另外,實驗室所得的[PNP]MCl3晶體為雙金屬中心以氯原子架橋的七配位結構,若使用溶劑THF則可得到單金屬中心THF鍵結的七配位結構。透過磷原子變溫核磁共振光譜,可以得到不同立體效應或電子效應的取代對配位基[PNP]的流變行為。直接將烷基取代的錯合物[PNP]M(CH2SiMe3)2(Cl)加熱,即可進行分子內α-abstraction,得到alkylidene 錯合物 [PNP]M(=CHSiMe3)(Cl),也成功得到alkylidene 錯合物 [PNP]H(=CHSiMe3)(CH2SiMe3)的晶體。控制不同溫度以NMR監測,透過Eyring plot分析得到[PNP]Zr(CH2SiMe3)2(Cl)進行 α-abstraction的∆H‡ = 16.49(19) kcal/mol以及∆S‡ = −25.64(19) cal/mol•K; [PNP]Hf(CH2SiMe3)2(Cl) α-abstraction的∆H‡ = 18.70(36) kcal/mol以及∆S‡ = −23.12(36) cal/mol•K。添加路易士酸AlMe3成功合成新的zwitterionic 錯合物 [PNP]Zr(μ2-CHSiMe3)2(AlMe2),這個bisalkylidene錯合物也有完整的晶體及NMR的鑑定。第四族的alkylidene錯合物可以與具有雙鍵之烯類(乙烯、norbornene)進行複分解催化反應,尤其是[PNP]M(=CHSiMe3)(Cl)對norbornene開環岐化聚合有非常良好的立體選擇性,聚合物polynorbornene的立體位相選擇高達99%,且反應時間於兩小時內PDI值小於1.1。
Abstract
A series of tetravalent zirconium and hafnium complexes were supported by diarylamido-phosphino [PNP]- (bis(o-diisopropylphosphinophenyl)amide) ligand. The reaction of MCl4(THF)2 (M = Zr, Hf) with [PNP]Li in toluene at room temperature generates [PNP]MCl3 as solid in 60 % yield. Polyalkyl complexes which are lack of β-hydrogen have been achieved in synthesis of [PNP]MR3 (R = Me, CH2SiMe3) or [PNP]M(CH2SiMe3)2(E) (E = Cl, Me) since we could control the desired product from steric effect. An X-ray diffraction study of [PNP]ZrCl3 showed it to be a chloride-bridged binuclear species {[PNP]MCl2(μ-Cl)}2 in which both metal atoms are 7-coordinate whereas that of [PNP]MCl3(THF) revealed a mononuclear, 7-coordinate core structure. The phosphine fluxional exchange were found in those complexes, monitoring variable temperature 31P NMR, their fluxionality were calculated by line shape analysis. By heating [PNP]M(CH2SiMe3)2(Cl) in solution, we can afford new alkylidene complexes [PNP]M(Cl)(=CHSiMe3) via intramolecular α-abstraction. Through Eyring plot analysis, the activation energy of [PNP]Zr(CH2SiMe3)2(Cl) α-abstraction is ∆H‡ = 16.49(19) kcal/mol and ∆S‡ = −25.64(19) cal/mol•K; [PNP]Hf(CH2SiMe3)2(Cl) α-abstraction is ∆H‡ = 18.70(36) kcal/mol and ∆S‡ = −23.12(36) cal/mol•K. The mixture [PNP]Hf(=CHSiMe3)(Cl) could not isolate with any purification, but [PNP]Hf(=CHSiMe3)(CH2SiMe3) obtained through directly alkylation. Here we also identified multiple alkylidene derivatives of [PNP]M(=CHSiMe3)(X) (X = Cl, CH2SiMe3). The X-ray structured and solution NMR data of those alkylidene complexes can be ascribed to evidence of α-agostic interaction with metal center. A novel zwitterionic complex [PNP]Zr(μ2-CHSiMe3)2(AlMe2) was characterized by X-ray and been received a bisalkylidene complex which was synthesized through addition Lewies acid (AlMe3) into [PNP]Zr(=CHSiMe3)(CH2SiMe3). Group 4 alkylidene was acting as catalyst to metathesize ethylene or norbornene. The complexes [PNP]M(=CHSiMe3)(Cl) have highly streotic selectivity catalyst for ring-opening metathesis polymerization (ROMP) of norbornene. It is important to emphasize the great significance of the catalyst discoveries and improvements for both academic research and industry.
目次 Table of Contents
論文審定書 I
誌謝 II
摘要 III
Abstract IV
Contents V
Figures Directory XIII
Table Directory XX
1. Introduction 1
1-1. C-H bond activation 1
1-2. Hybrid chelating ligands 4
1-3. Alkylidene complexes and multitude of applications olefin metathesis 6
2. Results and discussion 20
2-1. Synthesis, characterization, and fluxional behavior of [PNP]MCl3, [PNP]MCl3(THF) 20
2-1.1 Synthesis, characterization, and fluxional behavior of [PNP]ZrCl3, [PNP]ZrCl3(THF) 20
2-1.2 Synthesis, characterization, and fluxional behavior of [PNP]HfCl3, [PNP]HfCl3(THF) 24
2-2. Synthesis, and fluxional behavior of Group 4 polyalkyl complexes 29
2-2.1 Synthesis and fluxional behavior of trisalkyl zirconium complexes 30
2-2.2 Synthesis and fluxional behavior of trisalkyl of hafnium complexes 33
2-2.3 Synthesis and fluxional behavior of mixalkyl of zirconium complexes 35
2-2.4 Synthesis and fluxional behavior of mixalkyl of hafnium complexes 39
2-3. Synthesis, characterization, and kinetics investigation of alkylidene complex of Group 4 metal 42
2-3.1 Synthesis and kinetics investigation of [PNP]Zr(=CHSiMe3)(Cl) 42
2-3.2 Synthesis and kinetics investigation of [PNP]Zr(=CHSiMe3)(CH2SiMe3) 43
2-3.3 Synthesis, characterization, and kinetics investigation of [PNP]Hf(=CHSiMe3)(Cl) 44
2-3.4 Synthesis and characterization investigation of [PNP]Hf(=CHSiMe3)(CH2SiMe3) 47
2-4. C-H bond activation of alkylidene complexes 50
2-4.1 C-H bond activation of zirconium and hafnium alkylidene complexes 50
2-4.2 Olefin activation of zirconium alkylidene complexes 52
2-4.3 ROMP activation of zirconium alkylidene complexes 57
2-4.4 Olefin activation of hafnium alkylidene complexes 61
2-4.5 ROMP activation of hafnium alkylidene complexes 62
2-5. Reaction of zirconium alkylidene complex with electrophile 68
2-6. Theoretical studies of diarylamido-phosphino zirconium and hafnium complexes 73
2-6.1 Theoretical studies of {[PNP]MCl2(μ-Cl)}2, [PNP]MCl3(THF) electronic structure 73
2-6.2 Theoretical studies of alkylidene complex 77
2-6.3 Theoretical studies of alkylidene complexes electronic structure 83
2-6.4 Theoretical studies of bisalkylidene complex electronic structure 88
3. Conclusion 90
4. Experiment 91
4-1. General considerations 91
4-2. Instrument 91
4-3. Experiment 93
5. References 100
6. Appendix 107
6-1. Kinetic investigation of α-abstraction
6-2. Dynamic investigation of [PNP]− fluxionality 114
6-3. Synthesis and reactivity study of diarylamido-phosphino tantalum complexes 150
6-4. Theory mechanism studies of β-hydrogen elimination of [Ph-PNP]Ni(nBu) 152
6-4.1 Comparison of softwares and methods 153
7. X-ray crystal data 157
參考文獻 References
(1) Bergman, R. G. Nature 2007, 446, 391.
(2) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998, 37, 2181.
(3) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
(4) Goldshle, N. F.; Tyabin, M. B.; Shilov, A. E.; Shteinma, A. A. Russ. J. Phys. Chem. 1969, 43, 1222.
(5) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395.
(6) Dawoodi, Z.; Green, M. L. H.; Mtetwa, V. S. B.; Prout, K. J. Chem. Soc., Chem. Commun. 1982, 802.
(7) Halpern, J. J. Inorg. Chim. Acta 1985, 100, 41.
(8) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352.
(9) Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723.
(10) Watson, P. L. J. Am. Chem. Soc. 1983, 105, 6491.
(11) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731.
(12) Wayland, B. B.; Ba, S.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113, 5305.
(13) Fryzuk, M. D.; Carter, A.; Westerhaus, A. Inorg. Chem. 1985, 24, 642.
(14) Fryzuk, M. D. Can. J. Chem. 1992, 70, 2839.
(15) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics 1992, 11, 2967.
(16) Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Science 1997, 275, 1445.
(17) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. J. Am. Chem. Soc. 1990, 112, 8185.
(18) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics 1991, 10, 2026.
(19) Ozerov, O. V.; Gerard, H. F.; Watson, L. A.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 2002, 41, 5615.
(20) Liang, L. C.; Lin, J. M.; Hung, C. H. Organometallics 2003, 22, 3007.
(21) 李偉英, 國立中山大學化學研究所博士論文, 2008.
(22) Schrock, R. R. J. Am. Chem. Soc. 1975, 97, 6577.
(23) Guggenberger, L. J.; Schrock, R. R. J. Am. Chem. Soc. 1975, 97, 6578.
(24) Schrock, R. R. J. Am. Chem. Soc. 1974, 96, 6796.
(25) Wengrovius, J. H.; Schrock, R. R. J. Organomet. Chem. 1981, 205, 319.
(26) Fryzuk, M. D.; Mao, S. S. H.; Zaworotko, M. J.; Macgillivray, L. R. J. Am. Chem. Soc. 1993, 115, 5336.
(27) Fryzuk, M. D.; Duval, P. B.; Mao, S. S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1999, 121, 2478.
(28) Fryzuk, M. D.; Duval, P. B.; Mao, S.; Rettig, S. J.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1999, 121, 1707.
(29) Cheon, J.; Rogers, D. M.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119, 6804.
(30) Chauvin, Y. Angew. Chem., Int. Ed. 2006, 45, 3740.
(31) Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748.
(32) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760.
(33) Mcconville, D. H.; Wolf, J. R.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 4413.
(34) Odell, R.; Mcconville, D. H.; Hofmeister, G. E.; Schrock, R. R. J. Am. Chem. Soc. 1994, 116, 3414.
(35) Totland, K. M.; Boyd, T. J.; Lavoie, G. G.; Davis, W. M.; Schrock, R. R. Macromolecules 1996, 29, 6114.
(36) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 5426.
(37) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 7324.
(38) Houri, A. F.; Xu, Z. M.; Cogan, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 2943.
(39) Fischer, E. O. Pure Appl. Chem. 1970, 24, 407.
(40) Fischer, E. O. Pure Appl. Chem. 1972, 30, 353.
(41) Fischer, E. O.; Kreis, G.; Kreiter, C. G.; Muller, J.; Huttner, G.; Lorenz, H. Angew. Chem., Int. Ed. Engl. 1973, 12, 564.
(42) Bazan, G. C.; Oskam, J. H.; Cho, H. N.; Park, L. Y.; Schrock, R. R. J. Am. Chem. Soc. 1991, 113, 6899.
(43) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247.
(44) Schrock, R. R. Chem. Rev. 2002, 102, 145.
(45) Bailey, B. C.; Huffman, J. C.; Mindiola, D. J.; Weng, W.; Ozerov, O. V. Organometallics 2005, 24, 1390.
(46) Fryzuk, M. D.; Duval, P. B.; Mao, S.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1999, 121, 2478.
(47) Fryzuk, M. D.; Duval, P. B.; Patrick, B. O.; Rettig, S. J. Organometallics 2001, 20, 1608.
(48) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L. C.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 7822.
(49) Mashima, K.; Kaidzu, M.; Tanaka, Y.; Nakayama, Y.; Nakamura, A.; Hamilton, J. G.; Rooney, J. J. Organometallics 1998, 17, 4183.
(50) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 11831.
(51) Tsang, W. C. P.; Hultzsch, K. C.; Alexander, J. B.; Bonitatebus, P. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2652.
(52) Tsang, W. C. P.; Jamieson, J. Y.; Aeilts, S. L.; Hultzsch, K. C.; Schrock, R. R.; Hoveyda, A. H. Organometallics 2004, 23, 1997.
(53) Coates, G. W. Chem. Rev. 2000, 100, 1223.
(54) Kress, J.; Osborn, J. A.; Greene, R. M. E.; Ivin, K. J.; Rooney, J. J. J. Am. Chem. Soc. 1987, 109, 899.
(55) Ivin, K. J.; Laverty, D. T.; Rooney, J. J. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1977, 178, 1545.
(56) Weng, W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 4700.
(57) Basuli, F.; Bailey, B. C.; Watson, L. A.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. Organometallics 2005, 24, 1886.
(58) Bailey, B. C.; Basuli, F.; Huffman, J. C.; Mindiola, D. J. Organometallics 2006, 25, 3963.
(59) Bailey, B. C.; Fan, H. J.; Baum, E. W.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. J. Am. Chem. Soc. 2005, 127, 16016.
(60) Bailey, B. C.; Fan, H. J.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 8781.
(61) Bailey, B. C.; Fan, H.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. J. Am. Chem. Soc. 2006, 128, 6798.
(62) Bailey, B. C.; Fout, A. R.; Fan, H. J.; Tomaszewski, J.; Huffman, J. C.; Gary, J. B.; Johnson, M. J. A.; Mindiola, D. J. J Am Chem Soc 2007, 129, 2234.
(63) Schaeffer, R.; Tebbe, F. J. Am. Chem. Soc. 1963, 85, 2020.
(64) Bailey, B. C.; Tout, A. R.; Fan, H.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. Angew. Chem., Int. Ed. 2007, 46, 8246.
(65) 簡斌書, 國立中山大學化學研究所碩士論文, 2005.
(66) 蕭翌辰, 國立中山大學化學研究所碩士論文, 2010.
(67) 李俊緯, 國立中山大學化學研究所碩士論文, 2011.
(68) Sadighi, J. P.; Harris, M. C.; Buchwald, S. L. Tetrahedron Lett. 1998, 39, 5327.
(69) Liang, L. C.; Chien, P. S.; Lin, J. M.; Huang, M. H.; Huang, Y. L.; Liao, J. H. Organometallics 2006, 25, 1399.
(70) Liang, L. C.; Chien, P. S.; Hsiao, Y. C.; Li, C. W.; Chang, C. H. J. Organomet. Chem. 2011, 696, 3961.
(71) Manzer, L. E. Inorg. Synth. 1982, 21, 135.
(72) Brammell, C. M.; Pelton, E. J.; Chen, C. H.; Yakovenko, A. A.; Weng, W.; Foxman, B. M.; Ozerov, O. V. J. Organomet. Chem. 2011, 696, 4132.
(73) Fryzuk, M. D.; Carter, A.; Rettig, S. J. Organometallics 1992, 11, 469.
(74) van der Vlugt, J. I.; Lindner, R.; van den Bosch, B.; Lutz, M.; Reek, J. N. H. Organometallics 2011, 30, 499.
(75) Schrock, R. R. Chem. Commun. 2002, 2773.
(76) Gilliom, L. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 733.
(77) Studt, F.; MacKay, B. A.; Fryzuk, M. D.; Tuczek, F. J. Am. Chem. Soc. 2004, 126, 280.
(78) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery; Jr.; A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Norm, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Revision A.1; Gaussian, I. W., CT, 2009.
(79) Becke, A. D. Phys. Rev. A 1988, 39 3098.
(80) Lee C. , Y. W., Parr R. G., Phys. Rev. B 1988, 37, 785.
(81) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys 1988, 89, 2193.
(82) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(83) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284.
(84) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(85) Gerber, L. C. H.; Watson, L. A.; Parkin, S.; Weng, W.; Foxman, B. M.; Ozerov, O. V. Organometallics 2007, 26, 4866.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.246.193
論文開放下載的時間是 校外不公開

Your IP address is 3.135.246.193
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code