Responsive image
博碩士論文 etd-0723112-112652 詳細資訊
Title page for etd-0723112-112652
論文名稱
Title
金屬玻璃鍍膜之光學與機械性質
Optical and Mechanical Properties of Thin Film Metallic Glasses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-05-17
繳交日期
Date of Submission
2012-07-23
關鍵字
Keywords
金屬玻璃、基板表面形貌、電阻率、反射率、光學薄膜
reflectivity, morphology of substrate, electrical resistivity, optical thin film, metallic glass
統計
Statistics
本論文已被瀏覽 5648 次,被下載 277
The thesis/dissertation has been browsed 5648 times, has been downloaded 277 times.
中文摘要
本實驗主要分為兩部分,第一部分是利用濺鍍製程,在不同粗糙度的基板上沉積銀薄膜,再比較其粗糙度對反射率之影響。根據其研究結果,平均粗糙度在相差數個奈米之情況下反射率差異可達到百分之十左右,此結果顯示出表面粗糙度對反射率影響非常明顯,即便是薄膜表面之晶粒大小不同就會影響反射率。第二部分是將銀鎂基合金及鋯銅合金透過濺鍍製程來改變成分比例,分別沉積在玻璃基板上形成結晶與非晶質結構之薄膜,再比較其反射率之光學性質之差異,並且和純金屬之反射率做比較。實驗結果顯示結晶合金薄膜之反射率特徵在紅外線區段達到高反射率,但是在可見光至紫外光波段反射率會快速明顯下降。另一方面,金屬玻璃薄膜之反射率相對較低,但在可見光及紅外線區段皆呈現非常水平的平滑曲線。將純金屬、結晶及非結晶合金經過反射率與電阻率相比較之後皆可得到開根號反比的關係,此關係遵守古典物理的反射原理。根據物理公式合理,影響到線性反比關係之斜率者為平均自由時間(mean free time)。最後將結晶與非結晶之鍍膜利用奈米壓痕測量其硬度及楊氏模數,非晶質合金之硬度明顯高於結晶合金,而楊氏模數較無明顯之差距。
Abstract
This study is separated into two parts. Firstly, the Ag thin film was deposited on substrates with different average roughness by sputtering to examine the effect of substrate roughness on optical reflection. The results exhibit 10 percent difference of reflectivity within several nanometer changing in average roughness, indicating the reflectivity is easily affected by surface roughness. Secondly, optical reflectivity and electrical resistivity of multi-component AgMgAl alloys, both crystalline and amorphous, were measured. The crystalline alloys exhibit high reflection in infrared region but a steeper drop in visible and ultraviolet regions. By contrast, amorphous alloys show a lower but relatively uniform reflectivity in the visible and infrared regions. In both cases, the reflectivity was observed to scale with the square root of electrical resistivity. The scaling law was explained based on classical reflection theory. The different scaling factors for crystalline and amorphous alloys could be rationalized by the difference in the mean free time of charge carriers. Moreover, the mechanical properties of crystalline and amorphous thin film alloys, including hardness and modulus, were measured by nanoindentation. The hardness of thin film metallic glasses (TFMGs) is obviously higher than crystalline metals, while the modulus of TFMGs is similar to crystalline metals.
目次 Table of Contents
Content…………………………………………………………………………………………i
Table list……………………………………………………………………………………....iv
Figure list………………………………………………………………………………………v
中文摘要……………………………………………………………………………………...ix
Abstract……………………………………………………………………………………......x
Chapter 1 Preface ...............................................................................................................1
Chapter 2 Background and literature review......................................................................3
2-1 Characters of Al alloys .............................................................................................3
2-1-1 Nomenclature of aluminum alloys ................................................................4
2-1-2 Nomenclature of manufacturing state of aluminum alloys ...........................4
2-2 Applications of Al alloy systems..............................................................................4
2-3 Reflection and refraction ..........................................................................................5
2-3-1 Reflection and reflectivity.............................................................................5
2-3-2 Refraction and refractive index .....................................................................6
2-3-3 Correlation of resistivity and reflectivity ......................................................6
2-4 Optical thin films ......................................................................................................8
2-4-1 Principle of optical thin films........................................................................8
2-4-2 High reflection thin films ..............................................................................9
2-4-3 Characters of SiO2 thin films ......................................................................10
2-5 Characters of metallic glasses.................................................................................10
2-5-1 Optical properties of metallic glasses..........................................................11
2-5-2 Deformation behavior of metallic glasses...................................................12
ii
2-5-3 Mechanical properties of thin film metallic glasses....................................13
2-6 Mechanical properties characterized by nanoindentation ..............................14
2-7 Motivation ..............................................................................................................16
Chapter 3 Experimental methods .....................................................................................18
3-1 Materials .................................................................................................................18
3-2 Sample preparing....................................................................................................18
3-2-1 Substrate preparation...................................................................................18
3-2-2 Film preparation ..........................................................................................19
3-3 Property measurements and analyses .....................................................................20
3-3-1 X-ray diffractometer (XRD)........................................................................20
3-3-2 Atomic forced microscope (AFM)..............................................................20
3-3-3 Optical microscopy (OM) ...........................................................................20
3-3-4 Scanning electron microscopy (SEM).........................................................21
3-3-5 n&K analyzer ..............................................................................................21
3-3-6 Four-point probe..........................................................................................21
3-3-7 Nanoindenter ...............................................................................................21
Chapter 4 Results and discussions ...................................................................................23
4-1 X-ray analysis .........................................................................................................23
4-2 Morphology analysis ..............................................................................................23
4-2-1 Effect of different polished level....................................................................23
4-2-2 Surface difference between crystalline and amorphous structure ...............24
4-3 Optical property analysis ........................................................................................25
4-4 The correlation of resistance and reflection .....................................................27
4-5 The mechanical properties ...............................................................................29
Chapter 5 Conclusions .....................................................................................................31
iii
References………...………………………………………………………………………33
Tables……………………………………………………………………………………...36
Figures…………………………………………………………………………………….41
參考文獻 References
[1] Long Term Study of Aluminum Coatings for Astronomical Mirrors, Optical Mechanics, Inc., Iowa, (2008).
[2] G. Hass, Journal of the Optical Society of America, 45 (1955) 945-952.
[3] J.R. Davis, Corrosion of aluminum and aluminum alloys, ASM International, Cleveland, (1999).
[4] R.S. Shevell, Fundamentals of Flight, Englewood Cliffs, Prentice Hall, New Jersey, (1989).
[5] F.P. Stephen, Boatbuilding with Aluminum, International Marine, Victoria, (1993).
[6] M. Brogren, B. Karlsson, A. Roos, A. Werner, Solar Energy Materials & Solar Cells, 82 (2004) 491–515.
[7] D.J. Struik, Snell, Willebrord, American Council of Learned Societies, New York, (1975).
[8] A. Inoue, K. Amiya, I. Yoshii, H.M. Kimura, T. Masumoto, Materials Transactions, JIM, 35 (1994) 485-488.
[9] H. Lamb, Philosophical Transactions of the Royal Society of London 174 (1883) 519-526.
[10] G. Lee, Oliver Heaviside, Longmans, Green & Co., London, (1947).
[11] A.K. Azad, W. Zhang, Optics Letters, 30 (2005) 2945-2947.
[12] H.B. Scott, F. Stefan, Journal of Alloys and Compounds, 338 (2002) 73-79.
[13] R.T. Poole, Physics Education, 18 (1983) 280-283.
[14] U. Mizutani, Materials Science and Engineering, 99 (1988) 165-173.
[15] 李正中, 薄膜光學與鍍膜技術, 藝軒, 台北, (2006).
[16] M. Yang, A. Gatto, N. Kaiser, Journal of Optics A: Pure and Applied Optics, 8 (2006) 327-332.
34
[17] 楊明輝, 工業材料雜誌, 179 (2001) 134-144.
[18] W.B. Lacy, J.M. Williams, L.A. Wenzler, T.P. Beebe, Jr., J.M. Harris, Analytical Chemistry, 68 (1996) 1003-1011.
[19] J.L. Zhang, L.I. Jian, Y.H. Wo, Y.W. Wang, F.C. Shen, Z.H. Gan, The Chinese Journal of Nonferrous Metals, 14 (2004) 961-966.
[20] A.C. Lund, C.A. Schuh, Journal of Applied Physics, 95 (2004) 4815-4822.
[21] M. Telford, Materials Today, 7 (2004) 36-43.
[22] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, The Japan Society of Applied Physics, 40 (2001) 5382-5388.
[23] X. Hu, L. Shi, X. Miao, T.C. Chong, Optical Society of America, (2005).
[24] W. Chao, H.E. Cuiqun, M. Xiangshui, http://www.paper.edu.cn, (2011).
[25] H.E. Bennett, J.O. Porteus, Journal of the Optical Society of America 51 (1961) 123-129.
[26] Y.H. Wang, S.C. Her, C.N. Hsiao, H.P. Chen, Journal of Science and Engineering Technology, 4 (2008) 81-88.
[27] S. Mozgovoy, J. Heinrich, U.E. Klotz, R. Busch, Intermetallics, 18 (2010) 2289-2291.
[28] F. Spaepen, Acta Metallurgica, 25 (1977) 407-415.
[29] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Materialia, 55 (2007) 4067-4109.
[30] B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G. Wang, Applied Physics Letters, 86 (2005) 141904.
[31] C.C. Hay, C.P. Kim, W.L. Johnson, Physical Review Letters, 84 (2000) 2901-2904.
[32] Z.F. Zhang, J. Eckert, L. Schultz, Acta Materialia, 51 (2003) 1167-1179.
[33] Y.P. Deng, Y.F. Guan, J.D. Fowlkes, S.Q. Wen, F.X. Liu, G.M. Pharr, P.K. Liaw, C.T. Liu, P.D. Rack, Intermetallics, 15 (2007) 1208-1216.
[34] A. Inoue, Acta Materialia, 48 (2000) 279-306.
35
[35] J.B. Pethicai, R. Hutchings, W.C. Oliver, Philosophical Magazine A, 48 (1983) 593-606.
[36] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, Journal of Tribology, 106 (1984) 43-48.
[37] W.C. Oliver, C.J. Mchargue, S.J. Zinkle, Thin Solid Films, 153 (1987) 185-196.
[38] C.A. Schuh, Materialstoday, 9 (2006) 32-40.
[39] S.J. Bull, Journal of Physics D: Applied Physics, 38 (2005) R393-R413.
[40] U. Mizutani, K. Yoshinof, Journal of Physics F: Metal Physics, 14 (1984) 1179-1192.
[41] A. Inoue, K. Nakano, Y. Bizen, T. Masumoto, H.S. Chen, Japanese Journal of Applied Physics, 27 (1988) L944-L947.
[42] S.Y. Kuan, H.S. Chou, J.C. Huang, Surface & Coatings Technology, online (2012).
[43] Refractive Index Database, http://refractiveindex.info.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code