Responsive image
博碩士論文 etd-0723112-123013 詳細資訊
Title page for etd-0723112-123013
論文名稱
Title
1,2-二氯乙烷污染土壤之微生態系統批次降解研究
Microcosm batch study of the degradation of 1,2-DCA-contaminated soil
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-05
繳交日期
Date of Submission
2012-07-23
關鍵字
Keywords
1、2-二氯乙烷、生物復育法、微生態系統、變性梯度膠體電泳、即時定量PCR
DGGE, real-time PCR, 1, 2-dichloroethane, bioremediation, microcosm
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
1,2-二氯乙烷(1,2-dichloroethane, 1,2-DCA)為工業上常用之含氯有機物,對生物具有毒性。由於其屬於重質非水相液體,容易在地表下造成累積,造成整治上的困難。本研究係利用好氧及厭氧微生態系統批次實驗的方式,加入可激發微生物生長之不同基質,以促進現地微生物之代謝反應,達到降解1,2-二氯乙烷的效果。研究結果顯示好氧批次實驗中,自然衰減組(A1)與好氧污泥組(A3)在第7天的污染物分解效率超過90%,基質添加組(A2)在第14天時分解效率超過95%。而厭氧批次實驗中,除了自然衰減組(B1)外,其他組別在第10天時,皆能有效分解1,2-二氯乙烷至50%以下。厭氧污泥組(B3)甚至在第五天的污染物分解率就已達到80%。DGGE菌相分析的結果可以看出隨著實驗的進行,菌相產生變化,其中基質添加組(A2, B2)可能因砂糖促進不同的菌群生長,造成菌相改變最大。菌種鑑定的結果顯示各批次實驗中均出現可分解1,2-二氯乙烷之菌群,如Klebsiella、Pseudomonas、Rhodoferax及Xanthobactor,以及其他降解相關的菌群等。即時定量PCR結果則發現,Dehalococcoides spp.菌數變化符合厭氧基質添加組(B2)的1,2-二氯乙烷濃度變化,推測可能是本實驗中主要降解1,2-二氯乙烷的菌群。而Desulfitobacterium spp.菌數亦符合好氧基質添加組(A2)與厭氧批次實驗所有組別(B1, B2, B3, B4)的1,2-二氯乙烷濃度趨勢,推測Desulfitobacterium spp.可能是這些組別中主要降解1,2-二氯乙烷的菌群。
Abstract
1,2-dichloroethane (1,2-DCA) is a popular industrial chlorinated organic chemical. Because 1,2-DCA is a dense non-aqueous phase liquid and easily accumulated in deep soil and water, it is difficult to be removed from the contaminated sites. In this study, aerobic and anaerobic microcosm batch experiments were performed to evaluate the feasibility of biodegradation of 1,2-DCA by adding different growth substrates. The aerobic microcosm results show that approximately 90% of 1,2-DCA removal was observed in the natural degradation group (A1) and the aerobic sludge addition group (A3) after 7 days of incubation. Up to 95% of 1,2-DCA removal could be observed in the substrate supplement group in after 14 days of incubation. In the anaerobic microcosm studies, 50% of 1,2-DCA removal could be obtained in all groups after 10 days except for the natural degradation group (B1). Moreover, the degradation efficiency for the anaerobic sludge group (B3) reached 80% of 1,2-DCA removal in 5 days. The DGGE profiles show that the microbial diversity varied with time and the sugar supplement groups (A2, B2) exhibited the most microbial diversity. Bacterial clones results revealed that the 1,2-DCA biodegradable microbial strains were presented in the microcosms, such as Klebsiella, Pseudomonas, Rhodoferax and Xanthobactor. The real-time PCR results indicated that the Dehalococcoides spp. was the major bacterium that was responsible for the degradation of 1,2-DCA in the anaerobic substrate supplement group (B2). Desulfitobacterium spp. could be the dominant 1,2-DCA degrading bacterium for the aerobic substrate supplement group (A2) and all of the anaerobic groups (B1, B2, B3, B4).
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xi
(一) 前言 1
1.1 1,2-二氯乙烷之物化特性 1
1.2 1,2-二氯乙烷之人體危害 3
1.3 國內1,2-二氯乙烷之污染案例 5
1.4 重質非水相液體之整治技術 6
1.5 加強式生物復育 7
1.6 1,2-二氯乙烷之生物分解 8
1.6.1 好氧生物分解 8
1.6.2 厭氧生物分解 11
1.7 微生態系統研究 (Microcosm study) 12
1.8 分子生物技術檢測環境微生物 13
1.8.1 16 S rDNA之偵測 14
1.8.2 變性梯度膠體電泳(Denaturing Gradient Gel Electrophoresis, DGGE) 15
1.8.3 菌種鑑定 16
1.8.4 即時定量PCR (Real-time PCR) 17
1.9 研究目的 18
(二) 研究方法 19
2.1 微生態系統好氧批次生物分解實驗 19
2.2 微生態系統厭氧批次生物分解實驗 21
2.3 污染物分析 24
2.4 利用分子生物技術分析批次實驗中之優勢菌群 25
2.4.1 微生物DNA的萃取及純化 25
2.4.2 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 26
2.4.3 變性梯度膠體電泳(Denaturing Gradient Gel Electrophoresis, DGGE) 28
2.4.4 SYBR greenⅠ螢光染色 29
2.4.5 DNA定序與NCBI資料庫比對序列 29
2.4.6 即時定量PCR (Real-time PCR) 30
(三) 結果與討論 32
3.1 微生態系統批次實驗 32
3.1.1 好氧批次實驗 32
3.1.2 厭氧批次實驗 34
3.2 微生態系統批次實驗菌相分析與鑑定 37
3.2.1 好氧批次實驗 37
3.2.2 厭氧批次實驗 39
3.3 即時定量PCR偵測Dehalococcoides spp.與Desulfitobacterium spp.數量 41
3.3.1 好氧批次實驗 42
3.3.2 厭氧批次實驗 46
(四) 結論 52
(五) 建議 54
(六) 參考文獻 55
(七) 附圖 64
(八) 附表 74
參考文獻 References
行政院勞委會化學品全球調和制度GHS介紹網站(2010),http://ghs.cla.gov.tw/index.aspx
勞工安全衛生研究所(2009),物質安全資料表。
環保署(2008),土壤及地下水受比水重非水相液體污染場址整治技術選取、系統設計要點與注意事項參考手冊。
環保署(2009a),98年度土壤及地下水污染整治年報。
環保署(2009b),台灣塑膠工業股份有限公司仁武廠查證結果報告書。
環保署(2010),行政院環保署公告網,http://atftp.epa.gov.tw/announce/
環保署(2012),列管廠址查詢,http://sgw.epa.gov.tw/public/0401.asp
簡華逸(2010) “以現地生物復育法整治三氯乙烯污染之場址”,國立中山大學環境工程研究所博士論文,高雄。
李冠勳(2011) “三氯乙烯污染場址之微生物整治與監測”, 國立中山大學生物科學系碩士論文,高雄。
Achenbach, L.A., Michaelidou, U., Bruce, R.A., Fryman, J. and Coates, J.D. (2001) Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chloratereducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol. 51, 527-533.
Amann, R.I., Ludwig, W. and Schleifer, K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
Ballerstedt, H., Hantke, J., Bunge, M., Werner, B., Gerritse, J., Andreesen, J.R. and Lechner, U. (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol. Ecol. 47, 223-224.
Banchuen, T. (2002) A microcosm-based investigation into oxidized nitrogen removal in the hypolimnetic waters of the Occoquan Reservoir of Northern Virginia. Master's thesis, Virginia Polytechnic Institute and State University, Virginia.
Bano, N. and Hollibaugh, J.T.(2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68, 505-518.
Baptista, I.I.R., Peeva, L.G., Zhou, N.Y., Leak, D.J., Mantalaris, A. and Livingston, A.G. (2006) Stability and performance of Xanthobacter autotrophicus GJ10 during 1,2-dichloroethane biodegradation. Appl. Environ. Microbiol. 72, 4411-4418.
Blumel, S., Busse, H.J., Stolz1, A. and Kampfer, P. (2001) Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int. J. Syst. Evol. Microbiol. 51, 1831-1837.
Carlson, C. A. and Ingraham, J.L. (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 45, 1247-1253.
Coleman, N.V., Mattes, T.E., Gossett, J.M. and Spain, J.C. (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl. Environ. Microbiol. 68, 6162-6171.
Cox, C.D. (1980) Iron Reductases from Pseudomonas aeruginosa. J. Bacteriol. 141, 199-204.
Daniel, R.M., Smith, I.M., Phillip, J.A.D., Ratcliffe, H.D., Drozd, J.W. and Bull, A.T. (1980) Anaerobic growth and denitrification by Rhizobium japonicum and other rhizobia. J. Gen. Microbiol. 120, 517-521.
De Wildeman, S., Diekert, G., van Langenhove, H. and Verstraete, W. (2003) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl. Environ. Microbiol. 69, 5643-5647.
De Wildeman, S., Linthout, G., van Langenhove, H. and Verstraete, W. (2004) Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane. Appl. Environ. Microbiol. 63, 609-612.
Dey, K. and Roy, P. (2009) Degradation of trichloroethylene by Bacillus sp.: Isolation strategy, strain characteristics, and cell immobilization. Curr. Microbiol. 59, 256-560.
Dinglasan-Panlilio, M.J., Dworatzek, S., Mabury, S.A., and Edwards, E.A. (2006) Microbial oxidation of 1,2-dichlorethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures. FEMS Microbiol. Ecol. 56, 355-364.
Druschel, S.J. and Kinner, N.E. (2009) Rock fragments in trichloroethene microcosms for bedrock aquifers. Bioremediation Journal. 13, 107-120.
Egli, C., Scholtz, R., Cook, A.M. and Leisinger, T. (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43, 257-261.
Fletcher, K.E., Ritalahti, K.M., Pennell, K.D., Takamizawa, K., and Loffler, F.E. (2008) Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp. and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1. Appl. Environ. Microbiol. 74, 6141-6143.
Fries, M.R., Forney, L.J. and Tiedje, J.M. (1997) Phenol- and toluenedegrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol. 63, 1523-1530.
Futamata, H. Harayama , S. Hiraishi, A. and Watanabe, K. (2003) Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments. Appl. Microbiol. Biotechnol. 60, 594-600.
Gomes, N.C. M., Borges, L.R., Paranhos, R., Pinto, F.N., Mendonca-Hagler﹐ L.C.S. and Smalla, K. (2008) Exploring the diversityof bacterial communities in sediments of urbanmangrove forests. FEMS Microbiol. Ecol. 66, 96-109.
Gumaelius, L., Magnusson, G., Pettersson, B. and Dalhammar, G. (2001) Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 51, 999-1006.
Hage, J.C. and Hartmans, S. (1999) Monooxygenase mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1. Appl. Environ. Microbiol. 65, 2466-2470.
Hanada, S., Shigematsu,T., Shibuya, Katsutoshi., Eguchi, M., Hasegawa, T., Suda, F., Kamagata, Y., Kanagawa, T. and Kurane, R. (1998) Phylogenetic analysis of trichloroethylene-degrading bacteria isolated from soil polluted with this contaminant. J. Ferment. Bioeng. 86, 539-544.
He, J., K. M. Ritalahti, M. R. Aiello, and F. E. Loffler. (2003) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl. Environ. Microbiol. 69, 996-1003.
He, S., Gall, D.L. and McMahon, K.D. (2007) “Candidatus accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Appl. Environ. Microbiol. 73, 5865-5874.
Hirschorn, S.K., Dinglasan-Panlilio, M.J., Edwards, E.A., Lacrampe-Couloume, G. and Lollar, B.S. (2007) Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane. Environ. Microbiol. 9, 1651-1657.
Hollender, J., Dott, W. and Hopp, J. (1994) Regulation of chloro- and methylphenol degradation in Comamonas testosteroni JH5. Appl. Environ. Microbiol. 60, 2330-2338.
Holliger, C., Schraa G., Stupperich E., Stams, A.J.M. and Zehnder, A.J. B. (1992) Evidence for the involvement of corrinoids and factor-F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri. J. Bacteriol. 174, 4427-4434.
Hubert, C. and Voordouw, G. (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl. Environ. Microbiol. 73, 2644-2652.
Hunkeler, D. and Aravena, R. (2000) Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1,2-dichloroethane by Xanthobacter autotrophicus. Appl. Environ. Microbiol. 66, 4870-4876.
ITRC (The Interstate Technology & Regulatory Council) (2005) Technical and regulatory guidance for in situ chemical oxidation 2nd Ed.
Jenkins, O., Byrom, D. and Jones, D. (1987) Methylophilus: a new genus of methanol-utilizing bacteria. Int. J. Syst. Bacteriol. 37, 446-448.
Janssen, D.B., Scheper, A. and Witholt, B. (1984) Biodegradation of 2-chloroethanol and 1,2-dichloroethane by pure bacterial cultures. Invertebr. Biotechnol. 169–178.
Kalyuzhnaya, M.G., Marco, P.D., Bowerman, S., Pacheco, C.C., Lara, J.C., Lidstrom, M.E. and Chistoserdova, L. (2006a) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int. J. Syst. Evol. Microbiol. 56, 2517-2522.
Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E. and Chistoserdova, L. (2006b) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int. J. Syst. Evol. Microbiol. 56, 2819-2823.
Kanso, S., Greene, A.C. and Patel, B.K.C. (2002) Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int. J. Syst. Evol. Microbiol. 52, 869-874.
Karkman, A., Mattila, K., Tamminen, M. and Virta, M. (2011) Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol. Bioeng. 108, 2876-2883.
KEGG (Kyoto Encyclopedia of Genes and Genomes) (2012) Fatty acid metabolism - Desulfitobacterium dehalogenans. From http://www.kegg.jp/kegg-bin/show_pathway?ddh00071
Khan, S.T. and Hiraishi, A. (2002) Diaphorobacter nitroreducens gen. nov., sp. nov.,a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J. Gen. Appl. Microbiol.48, 299-308.
Kim, J.K., Park, K.J., Cho, K.S., Nam, S.W., Park, T.J. and Bajpai, R. (2005) Aerobic nitrification–denitrification by heterotrophic Bacillus strains. Bioresour. Technol. 96, 1897-1906.
Klecka, G.M., Carpenter, C.L. and Gonsior, S.J. (1998) Biological transformations of 1,2-dichloroethane in subsurface soils and groundwater. J. Contam. Hydrol. 34, 139-54.
Kocamemi, B.A. and Cecen, F. (2009) Biodegradation of 1,2-dichloroethane (1,2-DCA) by cometabolism in a nitrifying biofilm reactor. Int. Biodeterior. Biodegrad. 63, 717-726.
Kodama, Y. and Watanabe, K. (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int. J. Syst. Evol. Microbiol. 54, 2297-2300.
Kojima, H. and Fukui, M. (2010) Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 60, 2862-2866.
Labbe, N., Parent, Serge. and Villemur, R. (2004) Nitratireductor aquibiodomus gen. nov., sp. nov., a novel α-proteobacterium from the marine denitrification system of the Montreal Biodome(Canada). Int. J. Syst. Evol. Microbiol. 54, 269-273.
Liu, S.J., Jiang, B., Huang, G.Q. and Li, X.G. (2006) Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier. Water Res. 40, 3401-3408.
Loy, A., Schulz, C., L cker, S., Schopfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A. and Wagner, M.(2005) 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial Order “Rhodocyclales”. Appl. Environ. Microbiol. 71, 1373-1386.
Lozano-A, L.C., Bautista, M.A., Dussan-G, J. and Vives-Florez, M.J. (2008) DNA extraction from heavy oil contaminated microcosms and rpoB gene PCR amplification. Actual. Biol. 30, 7-14.
Marzorati, M., Borin, S., Brusetti, L., Daffonchio, Daniele., Marsilli, C., Carpani, G. & de Ferra, F. (2006) Response of 1,2-dichloroethane-adapted microbial communities to ex-situ biostimulation of polluted groundwater. Biodegradation. 17, 143-158.
Maymo-Gatell, X., Anguish, T., Zinder, S.H. (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl. Environ. Microbiol. 65, 3108–3113.
Mileva, A., Sapundzhiev, Ts. and Beschkov, V. (2008) Modeling 1,2-dichloroethane biodegradation by Klebsiella oxytoca va 8391 immobilized on granulated activated carbon. Bioprocess. Biosyst. Eng. 31, 75-85.
Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., Sekiguchi, Y. and Noda, N. (2010) Quantitative detection of chloroethene-reductive bacteria Dehalococcoides spp. using alternately binding probe competitive polymerase chain reaction. Mol. Cell. Probes. 24, 131-137.
Monferran, M.V., Echenique, J.R. and Wunderlin, D.A. (2005) Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere. 61, 98-106.
Myers, R.M., Maniatis, T. and Lerman, L.S. (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155, 501-527.
Nicolaisen, M.H., and Ramsing, N. B. (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol. Methods., 50, 189-203.
Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W., Backhaus, H. (1996). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature-gradient gel electrophoresis. J. Bacteriol. 178, 5636–5643.
Ogg, C.D. and Patel, B.K.C. (2009) Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int. J. Syst. Evol. Microbiol. 59, 964-971.
Oldenhuis, R., Vink, R.L.J.M., Janssen, D.B. and Withholt, B. (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55, 2819-2826.
Sanchez, M.A. and Gonzalez, B. (2007) Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134. Appl. Environ. Microbiol. 73, 2769-2776.
Satsuma, K. and Masuda, M. (2012) Reductive dechlorination of methoxychlor by bacterial species of environmental origin: Evidence for primary biodegradation of methoxychlor in submerged environments. J. Agric. Food Chem. 60, 2018-2023.
Seghers, D., Wittebolle, L., Top, E.M., Verstraete, W. and Siciliano, S.D. (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 70, 1475-1482.
Sheffield V.C., Cox D.R., Lerman L.S. & Myers R.M. (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. U. S. A. 86: 232–236.
Shi, H.P. and Lee, C.M. (2007) Phosphate removal under denitrifying conditions by Brachymonas sp. strain P12 and Paracoccus denitrificans PP15. Can. J. Microbiol. 53, 727-737.
Shiji, T. (2005) Characterization of aerobic denitrification mechanism in Klebsiella pneumoniae strain F-5-2 that can utilize ammonium and nitrate ions simultaneously and application of nitrifying and denitrifying processes to waste water treatment. Rep. Noda Inst. Sci. Res. 45, 131-132.
Stucki, G., Krebser, U. and Leisinger, T. (1983) Bacterial growth on 1,2-dichloroethane. Experentia 39, 1271–1273.
Suthersan, S.S. (1999) Remediation engineering design concept. CRC Press LLC.
Tan, Y. and Ji, G. (2010) Bacterial community structure and dominant bacteria in activated sludge from a 70 °C ultrasound-enhanced anaerobic reactor for treating carbazole-containing wastewater. Bioresour. Technol. 101, 174-180.
Thomsen, T.R., Kong, Y. and Nielsen, P.H. (2007) Ecophysiology of abundant denitrifying bacteria inactivated sludge. FEMS Microbiol. Ecol. 60, 370-382.
USEPA (United States Environmental Protection Agency) (1998) Technical protocol for evaluating natural attenuation of chlorinated solvents in ground.
Van den Wijngaard, A.J., van der Kamp, K.W.H.J., van der Ploeg, J., Pries, F., Kazemier, B. and Janssen, D.B. (1992) Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl. Environ. Microbiol. 58, 976–983.
Van der Zaan, B., de Weert, J., Rijnaarts, H., de Vos, W.M., Smidt, H. and Gerritse, J. (2009) Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. Water Res. 43, 3207-3216.
Van Raemdonck, H., Maes, A., Ossieur, W., Verthe, K., Vercauteren, T.,Verstraete, W. and Boon, N. (2006) Real time PCR quantification in groundwater of the dehalorespiring Desulfitobacterium dichloroeliminans strain DCA1. J. Microbiol. Methods. 67, 294-303.
Vaughan, E.E., Schut, F., Heilig, H.G., Zoetendal, E.G,. de Vos, W.M., Akkermans, A.D. (2000) A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1, 1-12.
Villemur, R., Lanthier, M., Beaudet, R. and Lepine, F. (2006) The Desulfitobacterium genus. FEMS Microbiol. Rev. 30, 706-733.
Wei, Z. and Seo, Y. (2010) Trichloroethylene (TCE) adsorption using sustainable organic mulch. J. Hazard. Mater. 181, 147-153.
Yokota, T., Fuse H., Omori T., and Minoda Y. (1986) Microbial dehalogenation of haloalkanes mediated by oxygenase or halidohydrolase. Agric. Biol. Chem. 50, 453-460.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.173.112
論文開放下載的時間是 校外不公開

Your IP address is 3.145.173.112
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code